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A B S T R A C T

Irrigated agriculture is the principal consumer of fresh water resources. Most countries do not have a precise
measurement of water consumption for irrigation. In this study, an innovative approach is proposed that allows
for estimation of irrigation water use at the catchment scale based on satellite soil moisture data. To this end, the
SM2RAIN algorithm, which had been originally developed for estimation of rainfall from the soil moisture
observations, is adopted. The satellite soil moisture observations obtained from Advanced Microwave Scanning
Radiometer 2 (AMSR2) along with different rainfall and evapotranspiration (ET) products in the period
2012–2015 are used as the input to the model. The methodology is tested in the agricultural plains of southern
Urmia Lake, which is one of the main agricultural plains in Iran for which actual irrigation data is available.

The results reveal that the proposed approach can capture the overall irrigation pattern, although; it is sys-
tematically overestimating irrigation volume compared to observed irrigation data. Thus the bias is calculated
over largely non-irrigated pixels and used to modify the model estimates. The bias-corrected results show good
agreement with the in situ irrigation data. In particular, the average model performance in the irrigated pixels in
terms of R and RMSE (mm/month) are (0.86 and 12.895) respectively. Accuracy varied depending on the inputs,
with improvement in order of 11% and 42% in R and RMSE depending on the inputs chosen. The method is also
applied to less irrigated areas that result in obtaining significantly lower irrigation rates.

The low spatial resolution of soil moisture products (i.e. ~50 km) makes it difficult to capture the irrigation
water of small irrigated croplands. Unreliable rainfall and ET data can also lead to the over/underestimation of
irrigation. In spite of the above limitations (particularly lack of reliable ET dataset), the proposed model can still
capture the irrigation pattern, given that strong soil moisture signal from irrigation is detected by the satellite.

1. Introduction

Seventy percent of water withdrawn from lakes, rivers, and ground
water aquifers is used for irrigation. Irrigated agriculture is the prin-
cipal consumer of fresh water resources worldwide (Thomson, 2003).
As the earth's population increase in future, the demand for food will
increase. To supply this growing demand, the entire world, and espe-
cially arid and semi-arid regions, will require a significant expansion
and intensification of the irrigation agriculture (Ozdogan et al., 2010).
In this regard improving the irrigation measurement techniques can
have a great impact on the efficiency and management of irrigation at
large scale. Moreover, estimating irrigation water can contribute to
assessing irrigation water food production (Vörösmarty et al., 2000),
modelling irrigation water requirements at the global scale (Döll and
Siebert, 2002) and quantifying the impact of irrigation on hydrometric

variables such as river discharge (Alter et al., 2015; Haddeland et al.,
2007) and ground water (Breña-Naranjo et al., 2014).

The studies employing remote sensing observations for irrigation
estimation are usually following three main objectives: (1) detection of
the irrigation signal or irrigation mapping; (2) quantifying the irriga-
tion amount; and (3) detecting the seasonal timing of irrigation. A
number of key studies that address these objectives are summarized in
Table 1.

Remote sensing has been an effective tool to monitor irrigated lands
in many locations around the world as their spectral responses are
different from non-irrigated croplands (Ozdogan et al., 2010). This has
been accomplished using optical sensors including Landsat, MODIS
(Moderate Resolution Imaging Spectroradiometer), AVHRR (Advanced
Very High Resolution Radiometer) and SPOT (Satellite pour 1′Ob-
servation de la Terre) (Ozdogan et al., 2010; Peña-Arancibia et al.,
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2014). For instance, Ozdogan and Gutman, 2008 compared different
maps of irrigated areas across the continental US that were produced
using different satellite sensors and methodologies, which highlighted
substantial agreement among these maps. Ambika et al. (2016) devel-
oped a multi-year (2000–2015) dataset of high-resolution irrigated area
maps from MODIS NDVI and land use/land cover data with satisfactory
accuracy. Peña-Arancibia et al. (2014) applied random forrest classifi-
cation technique to a combination of remotly sense vegatation and
water use indices (such as ETa and its surplus over precipitation) to
map irrigated cropland during the summer in the Murray–Darling Basin
in Australia. The results indicate that incorporating water use indices
enhanced the model capability in depiction of the irrigation croplands.
Similarly, several examples of irrigated area maps obtained from optical
and visible sensors have been produced to date (Ozdogan et al., 2010).

In recent years, satellite soil moisture products have also been in-
troduced as a tool for detecting irrigated areas. The first study in this
regard was carried by (Kumar et al., 2015) who used satellite soil
moisture observations from ASCAT (Advanced SCATterometer), AMSR-
E (Advanced Microwave Scanning Radiometer - Earth Observing
System), SMOS (Soil Moisture and Ocean Salinity), ESA CCI SM
(Europan Space Agency Climate Change Initiative Soil Moisture) and
Windsat, together with modelled data from Noah land surface model
(LSM), to detect irrigation over the continental US. In this approach a
comparison was made between the cumulative density function of a
modelled soil moisture data (not incorporating irrigation) and corre-
sponding satellite measurements. Where satellite product shows wetter
soil moisture condition (compared to modelled data) irrigation was
inferred. While the use of ASCAT soil moisture product showed pro-
mising results in detection of irrigation in specific areas (the plain of
Nebraska), the spatial mismatch between model and observation data
and confounding effects of topography, vegetation, frozen soils and RFI
(Radio Frequency Interference) prevented a clear identification of ir-
rigated areas in most regions. A similar approach has been used in many
other studies, for instance, Escorihuela and Quintana-Seguí (2016)
compared satellite soil moisture (ASCAT, AMSR-E, SMOS and SMOScat
– a MODIS-downscaled version of SMOS product) and modelled data
(by SURFEX - Surface Externalisée - land surface model) in the North-
east of the Iberian Peninsula. For the high resolution SMOScat product
(1 km), a clear decrease in correlation between modelled and satellite
data was observed for a small heavily irrigated region. Again, the land
surface model does not account for irrigation, thus the low correlation
was an indication of irrigation practices. SMOScat is also used in an-
other study by Malbéteau et al., 2018, in which SM data is assimilated
into a simple force-restore soil hydric budget model. As this model is
only forced by rainfall, timing of irrigation was detected where sig-
nificant difference exist between the SMOScat SM and the offline pre-
diction with the soil model.

Beside SM, other water balance components are also employed to
map irrigation using the abovementioned approach. For instance, in a
study by Hain et al., 2015 over Contiguous United States (CONUS), the
estimated ET by Noah LSM,v 3.2 (not incorporating non-precipitation
water sources) was compared against remotely sensed ETa product
(ALEXI-the Atmosphere-Land Exchange Inverse model) which is an
energy balance approach that take into account all the fluxes (including
irrigation) that alter the surface energy balance. The excess ET esti-
mated by ALEXI was attributed to the irrigation. While large scale ir-
rigation agriculture could be mapped by this approach, shortcomings
such as overestimation of ET in train-shading by ALEXI, the inherent
error in Noah LSM estimates and several other sink or source processes
(beside irrigation) that are not considered in NOAH model, hindered
the reliability of the method in certain parts of the study area.

MW SM data alone, are also employed for detection of irrigation
practices and its timing in different part of the world. Qiu et al., 2016
indirectly identified irrigated areas as they observe that, over eastern
China, the increase in the soil moisture trend (by ESA CCI SM) cannot
be explained by the trend obtained from the rainfall observations.

Therefore, the increasing trend in soil moisture might be due to irri-
gation. Singh et al. (2016) used AMSR-E soil moisture data for dis-
cerning the shifting over time in the irrigation practices in north wes-
tern India that was due to the Water Act implementation (after 2009)
imposing restrictions on early (pre-monsoon period) cultivation of rice.
A shift of two weeks in the onset of irrigation season was observed in
the SM variation pattern. A recent study by Lawston et al. (2017) over
three vastly irrigated areas in the United States also demonstrated that
the spatial signature and seasonal timing of the irrigation can be
identified using SMAP enhanced 9 km product.

Most of the above mentioned studies were focused on irrigation
mapping. However, the assessment of water amounts used for irriga-
tion, as opposed to simply mapping irrigated areas, is a much more
difficult and complex task. Typically, irrigation amount is estimated by
water balance models, and satellite observations (e.g., evapotranspira-
tion) are used as additional inputs to constrain and calibrate the models
(Droogers et al., 2010). By way of example, Peña-Arancibia et al. (2016)
used MODIS data to estimate actual evapotranspiration (ETa) that is
employed in a water balance model to estimate the amount and the
source of irrigation in a basin in Australia. Estimating latent heat flux as
the residual term in energy balance equation, is another approach to
estimate crop consumptive water use that is related to the irrigation.
However, large number of input data and the complexity of the
methods from one side, and the clear sky precondition for running the
model from the other side, hinder the practical application of these
models (Kalma et al., 2008). Moreover, these method only provide the
consumptive water use (i.e. the amount of water that is evaporated by
the crop or from the soil), not the amount of the irrigation that is ap-
plied to the field. Differently, microwave (MW) satellite sensors can
measure the soil moisture change in top soil layer effectively (operating
in all-weather condition and using limited number of ancillary data)
and might be a good solution for estimation of irrigation water use.
However, up to now most of the studies has used MW sensors for the
irrigation mapping (e.g. Escorihuela and Quintana-Seguí, 2016; Kumar
et al., 2015; Lawston et al., 2017; Qiu et al., 2016) which is not con-
sidered as their strength due to the coarse spatial resolution of soil
moisture products.

In this study, we propose an innovative approach that allows us to
estimate irrigation water amount from satellite soil moisture data.
Specifically, we exploit the SM2RAIN algorithm that was originally
developed by Brocca et al. (2014) for estimating rainfall from the
knowledge of soil moisture observations. The SM2RAIN method has
been successfully applied for rainfall estimation on a regional (Brocca
et al., 2013; Brocca et al., 2016; Ciabatta et al., 2017) and a global
(Brocca et al., 2014; Koster et al., 2016) scale by using satellite soil
moisture data. As the SM2RAIN algorithm estimates the total water
entering into the soil, over irrigated regions it provides an estimate of
rainfall plus irrigation. By the knowledge of rainfall from additional
information (e.g., rain gauges or satellite precipitation products), or by
assuming rainfall equal to zero (e.g., in dry periods over arid regions),
the actual amount of irrigation water can be obtained.

The main objectives of this paper are as follow: (i) Assessing the
capability of different SM product for detection of irrigation and se-
lection of the best product in the region; (ii) Detection of irrigation
signature (consistent with local irrigation practices) in time evolution of
the selected SM product; and (iii) Estimation of irrigation using
SM2RAIN method and satellite SM data and Evaluating the model
performance in irrigated pixels against in situ irrigation and non-irri-
gated pixels.

2. Method

2.1. Simulating the total water entering the soil using SM2RAIN

The SM2RAIN algorithm was initially developed to estimate rainfall
based on the water balance equation and the fluctuation of soil

E. Jalilvand, et al. Remote Sensing of Environment 231 (2019) 111226

3



moisture in time, by assuming that irrigation is not significant.
However, over irrigated regions, SM2RAIN provides an estimation of
total water entering into the soil, i.e., rainfall plus irrigation.
Specifically, the soil water balance equation can be described by the
following equation (Brocca et al., 2015):

nZ dS t
dt

I t g t r t e t( ) ( ) ( ) ( ) ( )= (1)

where n [−] is the soil porosity, Z [mm] is the soil layer depth (n times
Z is denoted as the Z∗ that is the soil water capacity), S(t) [m3/m3] is the
relative saturation of the soil or relative soil moisture, t [day] is the
time, I(t) [mm/day] is the total water entering into the soil, i.e., rainfall
plus irrigation, g(t) [mm/day] is the drainage (deep percolation plus
subsurface runoff) rate, r(t) [mm/day] is the surface runoff and e(t)
[mm/day] is the actual evapotranspiration (ETa).

Then to solve the equation for estimating the I(t) the following as-
sumptions are made:

1. The rate of surface runoff is negligible (see Brocca et al., 2015 for
more details)

2. The drainage rate is related to the soil moisture through a power law
equation, g(t)= aS(t)b (a and b are the drainage parameters)

3. ETa is linearly related to potential evapotranspiration (ETpot), e
(t)= ETpot(t)S(t),

Applying these assumptions the Eq. (1) can be written as:

I t Z dS t
dt

aS t ET t S t( ) ( ) ( ) ( ) ( )b
pot= + + (2)

where Z*, a and b are three parameters to be estimated.
It is noteworthy that when actual ET (ETa) is available it can be

used directly in the Eq. (2) instead of ETpot (t) × S(t).

2.2. Estimating the irrigation amount

By using observed rainfall data, P(t), or by assuming rainfall equal
to zero (e.g. in dry periods), the actual amount of irrigated water, IR(t),
can be obtained using Eq. (3):

IR t I t P t Z dS t
dt

aS t ET t S t P t( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )b
pot= = + + (3)

In this study, we also considered the case in which the ETa data is
available (Eq. (4)).

IR t I t P t Z dS t
dt

aS t ET t P t( ) ( ) ( ) ( ) ( ) ( ) ( )b
a= = + + (4)

In Eqs. (3) and (4), IR(t) is the average irrigation water depth [mm/
day] at the pixel level. Note that when this value is negative it is as-
sumed equal to zero.

To obtain the model parameter values (a, b and Z∗), the SM2RAIN
algorithm is calibrated against reference rainfall data. Concretely, ir-
rigation periods are masked and the model is calibrated during the non-
irrigated period. This is done because during the irrigation seasons, the
change in the SM is a result of both rainfall and irrigation; however,
unlike rainfall, the ground truth irrigation data are not usually avail-
able. Thus, during the irrigation period the soil moisture fluctuation is
not compatible with the rainfall pattern and the calibration would re-
sult in estimation of wrong model parameters. We also choose to cali-
brate the model using 10-day accumulated rainfall, as the best model
performance in simulation of the precipitation over the region is ob-
tained at this time step. So in this study, the minimization of the root
mean square error (RMSE) between reference and simulated 10-day
accumulated rainfall is chosen as the objective function for the cali-
bration (for more details on the calibration process refer to Brocca
et al., 2014, 2016).

2.3. Performance assessment

The assessment of the estimated irrigation water use is carried out
by using two approaches: 1) The comparison of the simulated and the
in-situ irrigation water use at monthly time step: indeed, the estimated
irrigation is in terms of water depth (mm), so first the total volume of
allocated irrigation water to the plain is divided by the plain area (i.e.
975 km2) to estimate the in situ irrigation depth. Then, the total esti-
mated irrigation depth at each pixel is divided by the fraction of irri-
gated area at that pixel (obtained from the land use map) to estimate
the irrigation depth that is applied to the cropland area. Then, assuming
that the whole plain is uniformly irrigated, the in situ and the simulated
irrigation water use are compared in each pixel. Another approach for
validation of results would be estimation of irrigation at all pixels that
cover the plain and comparing the average estimated depth with the in
situ irrigation depth. However, as it is explained in the Data collection
section, due to some limitations at some pixels such as, data gap in soil
moisture time series and presence of other irrigated area without in situ
irrigation record, this approach is not considered in this study.

2) The retrieval of irrigation water in the non (less)-irrigated pixels
close to irrigated pixels: The agreement between observed and esti-
mated irrigation in the irrigated pixels and the estimation of nearly zero
irrigation in the non-irrigated pixels can be consider evidence for good
performance of the method in quantifying the irrigation water. The
adjacent pixels are chosen to make sure the climatic condition is almost
the same and the only factor that is changed is the irrigated area of the
pixel.

2.4. Removing bias from SM2RAIN-estimated irrigation

Since the SM2RAIN-estimated irrigation and the observed rainfall
might show systematic discrepancy where no irrigation is applied, the
model bias is estimated over non-irrigated or rain-fed cropland areas
and used for correcting the simulation at the irrigated pixels. Indeed, by
removing the bias from the difference between the total water entering
the soil (I) and the observed precipitation (P), we single out the dif-
ferences due to the irrigation practices (Eq. (5)).

IR t I t P t bias( ) ( ) ( )= (5)

To achieve this the monthly bias that is estimated over non-irrigated
pixels is removed from the irrigation estimated at the adjacent irrigated
pixel. Choosing the neighboring pixels for bias correction will maximize
the possibility of the climate similarity, thus any difference in the es-
timated irrigation at the pixels can be attributed to the model bias ra-
ther than different rainfall pattern.

3. Study area and materials

3.1. Study area

The Miandoab plain is located in the southern part of Urmia Lake
(one of the largest salt water lakes on earth and a highly endangered
ecosystem) in west Azarbayjan province of Iran (AghaKouchak et al.,
2015) (Fig. 1) and it is one of the main agricultural plains of Iran
(Salmon et al., 2015). The climate of the region is semi-arid. In summer
the rate of actual evapotranspiration (ETa) is high and surface and
ground water resources are used as supplemental resources alongside
precipitation. Most of rainfall in this region occurs from January to
May. Based on a 50-year record (1960–2010), the average annual
precipitation and temperature are 296 mm and 12 °C respectively
(ranging from −10 °C in December to 30 °C in August). Accordingly,
the mean annual potential evapotranspiration (ETPot) is 900–1500 mm
(Bagheri et al., 2017) and most of the irrigation occurs in spring and
summer (April–September) (data from Meteorological Organization of
Iran, www.irimo.ir).

The main surface water resources to irrigate this plain are the
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Zarrineh-Rood and Simineh-Rood rivers that, after supplying the plain,
reach the lake. Approximately, half of the input surface water to the
Urmia Lake (almost 2 billion cubic meter per year) pass through this
plain (Mahab Ghodss Consulting Engineering Co, 2010). The Urmia
lake area has declined dramatically in last 20 years. This decline is
mainly due to the diversion of water for irrigated agriculture (Pengra,
2012). The surface water from Zarrineh-Rood River is stored in Bukan
Dam with the storage capacity of 834 million cubic meter, and then
diverted to the irrigation network of Miandoab plain through Nor-
ouzloo diversion weir (Yekom Consulting Engineers, 2016). However,
the surface water is only delivered effectively in two parts of the plain
(i.e. North east (NE) and south East (SE)) with completed irrigation
network (see Fig. 2), in other parts, due to lack of either main or sec-
ondary canals the surface water is not regularly provided and ground-
water is used as a supplemental resources (Forootan et al., 2014;
Tourian et al., 2015). The NE part of the irrigation network receives
almost 30% more water than the southern part. Indeed, the direct (il-
legal) water extraction from the Simeneh Rood River and pumping from
the ground water, are other resources for irrigation in the SE of the
plain. The irrigation network supplies agricultural parcels of 20–60 ha,
which due to lack of storage facilities in most cases are irrigated right
after receiving water allotment (Yekom Consulting Engineers, 2016).
The field application irrigation efficiency in the region is 30% pre-
dominated by surface irrigation (Hassanzadeh et al., 2012).

The volume of the water that is released from Norouzloo diversion
weir to the irrigation network is recorded on monthly basis and used as
the in situ irrigation data. Indeed, the volume of the irrigation water is

divided by the irrigated cropland area of the Miandoab plain (i.e.
975 km2) to estimate the in situ area-averaged monthly irrigation depth
and then it is compared with the accumulated monthly irrigation depth
estimated by SM2RAIN. It is also noteworthy that Miandoab plain is the
only plain in the region that has irrigation network and a record of
surface irrigation water volume. Thereby validating the method in
other part of the case study is not possible. Nevertheless, the irrigation
data in this plain is only accounted for the surface irrigation and there is
no precise information about the volume of water withdrawal from
wells or rivers for irrigation.

Based on the land use map of Urmia basin for year 2013, the total
cultivated area of Miandoab plain is approximately 975 km2

(Youneszadeh Jalili et al., 2017). The main crops in this plain are
wheat, barley, potatoes, tomatoes, sugar beets, alfalfa and apples, in
which wheat, barley are typically planted in October and harvested in
June and the remaining are usually planted around April and harvested
in October (Zaman et al., 2016). Since most of the crops in the region
are irrigated between April to October and there is almost no rainfall in
this period (the change in SM is mainly due to the irrigation), we
consider April to October as the irrigation season in this study.

3.2. Data collection

The SM2RAIN algorithm uses soil moisture and actual evapo-
transpiration (ETa) as input data. Precipitation data are also needed for
calibrating the algorithm parameters.

The level 3 (L3) soil moisture product from Advanced Microwave

Fig. 1. Location map and overview of the area. a) The Urmia basin location in Iran. b) Urmia basin, Urmia Lake, the weather stations (Malekan and Miandoab) and
the Miandoab plain in West Azarbayjan province of Iran. c) The Miandoab plain (yellow border), two main rivers and AMSR2 soil moisture grid cell located on the
plain (pixel1–4, Pixel (A), Pixel (B) and pixel (C)). The Zarineh Rood River is the most important surface water resources for the Urmia Lake that supplies irrigation
network of the plain through Norouzloo diversion weir. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Scanning Radiometer 2 (AMSR2) at daily time scale and spatial sam-
pling of 0.25 degree (~25 km) (Koike, 2013), for 4 years (July
2012–December 2015) is used as satellite soil moisture products in this
study. We note that we performed a preliminary analysis (not shown for
brevity) by considering different satellite soil moisture products and
algorithms: ASCAT; SMOS; AMSR2 JAXA (Japan Aerospace Exploration
Agency) AMSR2-LPRM (Land Parameter Retrieval Model), i.e., the
AMSR2 soil moisture product obtained with JAXA and LPRM algo-
rithms, respectively. Some of these products have specific issues in the
investigated area. For instance, the number of soil moisture retrieval in
SMOS is quite low due to radio frequency interference (RFI) problem
(see Fig. S1 in the Supplementary material) and volume scattering in
ASCAT causes an increasing pattern in SM during the dry season (here
irrigation season) specially at pixels with low vegetation density (see
Fig. S2 in the Supplementary material and Wagner et al., 2014). The
above issues are not observed in AMSR2 SM time series. Among AMSR2
SM algorithms (i.e. JAXA and LRPM), the JAXA data is reported to have
a closer SM dynamic to the in situ data and a better performance in the
arid and semi-arid area compared to LRPM (Bindlish et al., 2018; Kim

et al., 2015). Therefore, AMSR2-JAXA soil moisture dataset is employed
in this study for estimation of the irrigation water use. The AMSR2-
JAXA soil moisture dataset is available online through GCOM-W1 Data
Providing Service: https://gcom-w1.jaxa.jp. Since the Ascending
(13:30) overpass is usually closer to the irrigation time in the plain, the
analysis is done using this product only. Additionally, soil moisture
observation characterized by low quality (e.g., frozen/snow conditions,
pixels near coastal area, big lakes and marshes, dense forest and big
urban area) are removed from the dataset.

The Miandoab plain is covered by four pixels of AMSR2 (Fig. 1). The
evaluation of the quality and accuracy of soil moisture data, based on the
aforementioned criteria, shows that the soil moisture retrieval at Pixel (2)
is frequently flagged unreliable due to presence of lake water body and
marshlands in large fraction of this pixel (see Fig. S3 in the Supplemen-
tary material). Similarly, in Pixel (3) a large urban area (the Miandoab
city) is present (see Fig. S4 in the Supplementary material) that can have
an impact on the accuracy of the soil moisture retrievals, however; since
the size of the city is small compare to the pixel area this pixel is kept in
the analysis. Pixel (4) covers two irrigated cropland plains (including

Fig. 2. Irrigation network in Miandoab plain; the red lines shows the main rivers (Zarineh and Simineh), the main and secondary irrigation canal are shown by cyan
and white lines. The water is supplied from Norouzloo diversion weir to the main canals and deliver to the field through secondary canals. The zones with completed
irrigation network (Green), only main irrigation canals constructed (Blue), Network under construction (Orange) and without irrigation network (red) are shown in
the map. The AMSR2 grid cell location (pixel 1–4) are also indicated by the numbers in the map. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Miandoab) with different irrigation system. As it is not possible to sepa-
rate the irrigation water of each plain from the average soil moisture
retrieval, we do not compare estimated irrigation at pixel (4) with the
observed data, however; the amount of irrigation in this pixel is still es-
timated for the reference (see Fig. S5). As a result, in this study irrigation
will be estimated at Pixel (1) and pixel (3) and will be evaluated against in
situ irrigation data and non-irrigated pixels. Three neighboring pixels
(pixel A, B and C in Fig. 1) with almost no irrigated area are chosen as the
non-irrigated pixels to be compared with pixel 1 and 3. A summary of the
fraction of irrigated area and well-established irrigation paddocks and
conveyance system at each pixel is shown in Table 2.

The 10-day averaged ETa product estimated by the ET look algo-
rithm (Bastiaanssen et al., 2012) through Penman-Monteith equation
that is provided by FAO: Water Productivity Open-access portal
(WaPOR) for Africa and near east with 250 m spatial resolution is used
as input evapotranspiration product (https://wapor.apps.fao.org).
However, reliable ETa product is not always available, thus in this study
a simpler method is also used in which ETa is estimated as a linear
function of ETpot and soil moisture (hereafter SM_ETp(GLEAM)). The
ETpot is obtained from Global Land Evaporation Amsterdam Model
(GLEAM v3.1, Martens et al., 2017) that provides the daily Potential
evapotranspiration data based on the Priestley and Taylor equation
with 0.25° spatial resolution.

Daily observed precipitation data from 2012 to 2015 are obtained
from two weather stations that are operated by the Meteorological
Organization of Iran (www.irimo.ir) (see Fig. 1 for their location) and
their arithmetic mean daily precipitation is used as the in situ pre-
cipitation data. In addition, the Multi Source Weighted Ensemble Pre-
cipitation (MSWEP) product obtained by merging gauge, satellite, and
reanalysis data that is globally available at 3-hourly time steps and
0.25° spatial resolution from 1979 to 2015 is considered (Beck et al.,
2017) to assess the model performance where reliable ground ob-
servations are not available.

The allocated water to the irrigation network from the Norouzloo
diversion weir is obtained from Iranian Water resources management
company (IWRM co., http://portal.wrm.ir). The data is reported on the
monthly basis (from June 2012–December 2015) and provided in mil-
lion cubic meters (MCM) of the water that is released to the irrigation
network. The data is converted to the depth of irrigation (mm) by di-
viding to the plain irrigated cropland area (i.e. 975 km2). Since the
canals are mostly lined with concrete we neglect any water loss in the
conveying system and assume that the whole amount of the released
water is delivered to the field. A brief summary of the datasets used in
this paper is shown in Table 3.

4. Results

In this section, we present the results for the quantification of irri-
gation water use in Miandoab plain from AMSR2-JAXA soil moisture
data via SM2RAIN algorithm. Then, we compare the retrieved irrigation

water with observed irrigation data, and we evaluate the model per-
formance in less-irrigated regions. The results are first presented
without removing the false irrigation and then the bias-corrected irri-
gation are shown and discussed in Section 4.4.

4.1. Rainfall estimation through SM2RAIN in non-irrigated periods

Before estimating the irrigation, the skill of SM2RAIN in simulation
of precipitation is evaluated. This is important because the errors in
rainfall estimation can be propagated to our irrigation estimates. In
Fig. 3 the SM2RAIN-estimated rainfall plus irrigation depth at pixel 1
and 3 (using Eq. (4)) is compared with the ground-based rainfall data
for the period 2012–2015 (see Fig. S6 of Supplementary material for the
simulation with Eq. (3)). In the bottom panel, the soil moisture time
series from AMSR2-JAXA is also illustrated. The highlighted areas are
masked out as they are periods in which irrigation might occur. The
non-zero simulated rainfall plus irrigation in these periods is an evi-
dence that the proposed approach can capture the irrigation signal.
Outside the irrigation season there is a good agreement between esti-
mated and observed rainfall (see Table 4). In particular, using different
rainfall dataset for calibration, return almost the same results in pixel
(1) with MSWEP performing slightly better, however, using gauge
precipitation data for calibration in pixel (3) is resulted in substantial
improvement in the model simulation. On the other hand, employing
different ET dataset has nearly no impact on the rainfall simulation as
the rate of ETa is negligible during the precipitation (this is only true
when the irrigation seasons are masked). (See Table 4.)

4.2. Determination of irrigation water in agricultural areas via SM2RAIN

To determine the amount of irrigation water use, the differences
between monthly simulated water entering into the soil (irrigation plus
rainfall) and monthly observed rainfall is computed. The upper panel in
Fig. 4 illustrates, the monthly rainfall plus irrigation when gauge
(Fig. 4a) or merged satellite-gauge products (Fig. 4b) are used as the
reference rainfall for model calibration. Accordingly, the lower panel
shows the simulated irrigation that is simply the difference between
simulated and observed rainfall. The simulation performed by adopting
different ET products are also shown by red and blue dashed lines in
this Figure.

Using less sophisticated ET algorithm (SM_ETp(GLEAM)) in Eq. (3)
results in underestimation of ETa and consequently irrigation water use
(see Fig. S7 in the Supplementary material). Indeed, in this situation the
model mainly depends on the change in the soil moisture (see Figs. 5
and 6 for contribution of each term to the estimated irrigation), but it is
still able to capture the irrigation seasonality consistent with the in situ
data. On the other hand using WaPOR ETa dataset almost always lead to
higher estimate of the irrigation (see Fig. 4c and d). This can be at-
tributed to not considering supplementary water resources (ground-
water or direct water extraction from the rivers) in the in situ irrigation

Table 2
The properties of the AMSR2 pixels that cover the Miandoab plain and the surrounding non-irrigated area.

Pixels Fraction of irrigated
area

Fraction of the area with the well-established irrigation
network to the total irrigated area at each pixel

Note

1 0.49 %80 Most of the irrigation water at this pixel is coming from the irrigation network
2 0.20 %15 This pixel is the closest to the Urmia lake and partly covered by the marshland. The

irrigation network is mostly under construction at this pixel.
3 0.47 %60 Simineh Rood river and ground water resources are used as the supplemental

resources to the irrigation network at this pixel
4 0.17 Not known This pixel covers two irrigated plain. There is no information about the irrigation

network in the western plain
A < 0.10 0 Two rivers cross this pixels and small irrigated area can be seen around them
B 0.02 0 The pixel is located in the hillside and the irrigated croplands are scattered and small
C < 0.05 0 Some irrigated area can be seen at NE part of the pixel where Zarineh Rood river

cross the pixel
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dataset. However, according to the recent technical report by Yekom
Consulting Engineers, (2016) around %80 of water demand in pixel (1)
is supplied by the irrigation network, thus in situ data should be a good
representative of irrigation at this pixel. Another possibility is a sys-
tematic overestimation by the model that is investigated in Section 4.4.
Indeed, the estimated irrigation at a non-irrigated pixel (false irriga-
tion) is used to disentangle the irrigation signal from the model bias and
then bias-corrected irrigation is compared against the in situ data.

The lag between simulated and observed irrigation at the start of the
irrigation seasons, when MSWEP precipitation data is used (Fig. 4d) can
be related to overestimation of this product at the beginning of the
spring (April and May). On the other hand during this period despite
the release of the water for the irrigation there are still some rain events
in the region that can overshadow any soil moisture changes triggered
by the irrigation, thereby a general underestimation is expected.

The time average contribution of each term to the total simulated
rainfall plus irrigation are calculated for the 6 pixels (3 irrigated and 3
non-irrigated) over irrigation seasons and are shown in the Fig. 6. The
major contribution, when Eq. (4) is used, is made by ET term with an
average value of 65%, followed by the soil moisture variation term
(Z∗ds/dt) with average value of 35%. This highlights the importance of

considering soil moisture variation alongside sophisticated evapo-
transpiration algorithm for irrigation estimation. The contribution of
the drainage term (asb) is negligible (< 5%); however, during the rainy
seasons, when the soil moisture is close to the saturation (usually after
rainfall), it plays a more important role in the SM2RAIN simulation. It is
also expected that by using a higher resolution SM product, soil

Table 3
Summary of the datasets used in this study.

Datasets Agency producer Spatial extension Period Spatial/temporal sampling

GLEAM ESA Global 2011–2015 0.25°/1-day
AMSR2 JAXA Global 2012–continuing 0.25°/~1-day
WaPOR FAO Africa and near east 2009–2017 250-m/every 10 days
MSWEP European Commission, Joint Research Centre (JRC) Global 1979–2015 0.25-degree/3 h
In-situ Precipitation Meteorological Organization – 1980-continuing 1-day
In-situ irrigation WRM organization – 2012–2015 Monthly

Fig. 3. Simulation of 10-day rainfall plus irrigation from SM2RAIN (Eq. (4)) and comparison with ground-based rainfall in pixel (1) (upper Figure) and pixel (3)
(lower Figure). In the upper panel of each plot the estimated rainfall plus irrigation and observed rainfall is illustrated, in the lower panel the relative soil moisture
time series from AMSR2-JAXA is shown. The highlighted areas are masked out as they are the periods in which irrigation might occur.

Table 4
The model performance in simulating precipitation in terms of R, RMSE (mm/
day) in pixel (1) and 3 (Irrigation period is masked); using a better rainfall
dataset for model calibration can have a significant impact on the simulation
outcome (as in pixel 3), but the model seems insensitive to the input ET dataset.

ET data Precipitation data

Pixel (1) Pixel (3)

In situ MSWEP In situ MSWEP

ETa (WaPOR)-Eq. (4) (0.66,
1.03)

(0.69, 0.99) (0.76,
0.87)

(0.63, 1.33)

ETpot (SM_ETp(GLEAM))-
Eq. (3)

(0.65,
1.02)

(0.69, 1.04) (0.76,
0.87)

(0.6, 1.38)
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saturation occurs more frequently and the drainage contribute more to
the final estimated irrigation. Using Eq. (3) yields different results. Soil
moisture variation term makes > 75% contribution (on average) to the
total simulated rainfall plus irrigation; whereas, ET contribute < 25%

(see Fig. 6a). In the non-irrigated pixels, regardless of which equation is
used, both soil moisture variation and ET terms have almost the similar
contribution to the estimated rainfall plus irrigation and drainage
contribute around 15% on average.

In situ precipita!on data MSWEP precipita!on data
(a) (b)

(d)(c)

Fig. 4. The quantification of irrigation water of the plain, evapotranspiration impacts on the retrieved irrigation water depth and comparison of simulated and
observed irrigation water of the plain. a) SM2RAIN estimate of precipitation plus irrigation using in situ precipitation data for calibration. b) SM2RAIN estimate of
precipitation plus irrigation using MSWEP precipitation data for calibration. c) The simulated irrigation by SM2RAIN using in-situ precipitation data. d) The
simulated irrigation by SM2RAIN using MSWEP precipitation data. The upper panel is showing observed precipitation (solid green line) and the simulated
Precipitation plus irrigation of Pixel (1) using WaPOR ETa (Eq. (4)) and SM_ETp(GLEAM) data (Eq. (3)) (blue and red dashed lines respectively). The lower panel
shows the comparison of retrieved and in-situ irrigation water. In this panel the evapotranspiration impacts on the retrieved irrigation is shown. Dashed blue and red
lines are quantified irrigation water estimated by employing WaPOR ETa data in Eq. (4) and SM_ETp(GLEAM) data in Eq. (3), respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Contribution of soil moisture variation term (Z∗ds/dt), drainage term (asb) and ET term (ETWaPOR) to the simulated irrigation in cell 1 during the irrigation
season (i.e. April–October) using different irrigation estimation method (i.e. Eqs. (3) and (4)); (a) shows the soil moisture fluctuation, (b) shows the simulated
precipitation plus irrigation that are estimated using Eqs. (3) and (4) and compares them with the observed precipitation, and (c) shows the estimated irrigation
obtain from Eqs. (3) and (4) (the area graph) alongside the contribution of soil moisture variation term (Z∗ds/dt), drainage (asb) and evapotranspiration (ETWaPOR)
terms.
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Fig. 6. - Percentage fraction of each term contribution to the estimated irrigation during the almost no-rain period (Apr-Oct) at 3 irrigated cells (1, 3 and 4) and 3
non-irrigated cells (A, B and C) when a) Eq. (3), and b) Eq. (4) is used for estimation of irrigation.

Fig. 7. Comparison of monthly irrigation water amount and soil moisture fluctuations in 5 pixels. a) Pixel (1), b) Pixel (3), c) Pixel (A), d) Pixel (B) and e) Pixel (C).
The soil moisture fluctuations and irrigation water depth of non-irrigated Pixels (A), (B) and (C) in the highlighted period is considerably lower than irrigated Pixels
(1) and (3). The barely visible soil moisture signal observed in pixel (A) in the lower enlarged Figure can be attributed to contribution of the neighboring irrigated
pixels (especially pixel 1) to its signal, mainly due to low spatial resolution of AMSR2 soil moisture product.
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4.3. Assessment of the method in the non-irrigated areas

To evaluate the reliability of SM2RAIN algorithm, the simulation is
also conducted over sparsely irrigated areas. To this end, the estimated
irrigation water use in Pixel (1) and (3) (the irrigated pixels), that is
obtained by adopting WaPOR ETa in Eq. (4) and using gauge pre-
cipitation as the reference rainfall, is compared with the three adjacent
pixels with less irrigated area (Pixel (A), (B) and (C)). Fig. 7 shows the
comparison of soil moisture fluctuations and monthly simulated irri-
gation water depth in the five pixels. As it can be seen, the monthly
irrigation in Pixel (A), (B) and (C) is considerably lower than Pixel (1)
and (3), although it is not completely zero, likely due to the noise in soil
moisture retrievals and to the spatial resolution of AMSR2 (equal to
62 × 35 km2). Indeed, even though the AMSR2 data are mapped onto a
regular 25 km grid, the neighboring pixels contribute to the signal and
also Pixel (B) is partly affected by irrigation. This bias observed in the
non-irrigated pixels are used to correct the model simulation at the
irrigated pixels as it is explained in the Sections 2.4 and 4.4.

In the irrigated pixels a weekly signal is detected in the soil moisture
fluctuations that is consistent with the common irrigation practices in
the region. The estimated irrigation at Pixel (1) and (3) is always larger
during the irrigation seasons. However; at the start of the wet season
there are some irrigation estimated in the non-irrigated pixels that is
likely due to error in ground-observed precipitation data (few reliable
rain gauge stations are available near Miandoab city). Applying the
method in a region with denser rain gauge network might result in a
better simulation (this is further discussed in the Section 5.1).

4.4. Correction for the bias calculated over non-irrigated pixels

If we assume that the irrigation estimated at a non (less)-irrigated
pixel is a model error, then to isolate the irrigation practices signal, the
SM2RAIN-estimated irrigation must be corrected for this bias. Thus,
using Eq. (5), the irrigation estimated at adjacent less-irrigated (or non-
irrigated) pixels (pixel A and C respectively) are subtracted from the
estimated irrigation at pixel 1 and 3 (irrigated pixels).

It seems that the bias-corrected irrigation at pixel 1 and 3 is better
matched with the in situ irrigation data (see Figs. 8 and 10 and Table 5),
however; in pixel (1) the irrigation seems to be under estimated in year
2012, 2013 and 2015. This can be explained in part by the fact that
pixel (A) is not completely non-irrigated, indeed there are some irri-
gated areas in regions close to the rivers in this pixel (see Fig. 1).

Moreover, as it is mentioned in the previous section it is expected that
the irrigated pixel (1) is also contributing to soil moisture signal at pixel
(A). Thereby, it is possible that by removing the bias, true irrigation
signal is removed from pixel (1). Another candidate for adjacent non-
irrigated pixel for pixel (1) would be pixel (B), however; being located
in a mountainous area with average height of 1963 m (almost 500 m
higher than average height at pixel A) (based on SRTM DEM v2, Nasa
jet propulsion lab (JPL), 2013), some over estimation in ETa is expected
in this pixel which is a known issue for energy balance algorithms (Li
et al., 2009). This overestimation in ET result in higher irrigation es-
timates at pixel (B) compare to pixel (A). Fig. 9 shows the ETa rate for
pixel (1), pixel (A) and pixel (B) from WaPOR ET dataset along with
ETpot at pixel (B) from GLEAM dataset (average of 10 days in mm).

The bias-corrected irrigation at pixel (3) is better aligned with the in
situ irrigation data but sometimes overestimates the irrigation (see
Fig. 10 and Table 6). This can be partially attributed to the fact that
only around 60% of the total irrigation at pixel (3) comes from irriga-
tion network and the rest is from ground water and direct pumping
from the rivers (Yekom Consulting Engineers, 2016) which are not in-
cluded in the observed irrigation data, although they are captured by
SM2RAIN. Besides, the non-irrigated pixel (C) is mostly surrounded by
the less or non-irrigated areas, so it is expected that the SM signal at this
pixel is less affected by the irrigated pixels i.e. pixel (3). The average
noise (bias) to irrigation signal ratio at pixel 1 and 3 is 24% that is
estimated during Apr-Oct of 2012–2015.

The same analysis using SM_ETp(GLEAM)t dataset (Eq. (3)) is also
carried out that result in underestimation of irrigation at pixel 1 and 3
(see Fig. S7 of the Supplementary materials), however; the simulated
irrigation pattern is still consistent with the in situ irrigation data.

At the start of each irrigation period (Mar-May) an underestimation
is observed in the model simulations. Indeed, despite the release of
water from Dam for irrigation, there are still some rain events at the end
of the winter and beginning of the spring (the highlighted area in
Fig. 11) that decrease the difference between the soil moisture at the

Fig. 8. The difference between estimated irrigation at pixel (1) (irrigated pixel) and pixel (A) (less irrigated adjacent pixel) and comparison with in situ irrigation
data at the plain.

Table 5
The statistics for bias-corrected simulated irrigation at pixel 1 and 3.

RMSE (mm/month) R

Irrigation Pixel (1-A) 13.14 0.84
Irrigation Pixel (3-C) 12.65 0.88
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irrigated and non-irrigated pixels, hence lower irrigation is estimated.
There are also some cases where simulated precipitation in pixel (A) is
bigger than pixel (1) (e.g. Oct 2014 and 2015) in which zero irrigation
is reported.

5. Discussion

Different factors are influencing the estimated irrigation using sa-
tellite soil moisture data: 1) the quality of precipitation data, 2) the
noise in the soil moisture data, 3) the choice of ET estimation method,
4) the amount of negative irrigation estimated by the model, and 5) the
bias caused by spurious soil moisture signal and unknown fraction of
irrigated area at each pixel. In this section, the limitation imposed by
each of these factors are discussed.

5.1. The quality of the precipitation data

The impact of precipitation data on the irrigation estimates are
twofold. The SM2RAIN estimates the total water entering the soil (I(t))
by first calibrating against precipitation data. Thus the density of rain
gauge or the quality of precipitation product can have a great impact on
the estimation of SM2RAIN parameter values. Two networks of pre-
cipitation stations are operating in the region; Iran Water resources
management organization (IWRM) and the synoptic station of Islamic
Republic of Iran Meteorological Organization (IRIMO). However, due to
some discrepancy between their collected data (during the period of the
study), only IRIMO network is considered which result in only two
stations in the investigated region (Miandoab and Malekan). MSWEP is
also used as another source of precipitation data to test the model.
MSWEP is merging satellite, reanalysis and rain gauge data to estimate
precipitation (Beck et al., 2017). As no station from Iran is included, it

Fig. 9. 10 day averaged ETa at pixel (1), A and B based on WaPOR ETlook product, and 10 days averaged ETpot at pixel (B) based on GLEAM product; pixel (B) has
the lowest cropland area among these three pixels but being located in a mountainous area and having lower temperature is usually misinterpreted by the energy
balance algorithm as higher rate of ET thus pixel (A) is chosen as the non-irrigated pixel to be subtracted from pixel (1) to correct for the bias.

Fig. 10. The difference between estimated irrigation at pixel (3) (irrigated pixel) and pixel (C) (less irrigated pixel) and comparison with in situ irrigation data at the
plain; the bias-corrected irrigation pattern shows good agreement with in situ data (better than pixel 1-A) the reason can be a bigger fraction of cropland in pixel (3)
(compare to pixel 1) are using supplementary water resources (e.g. ground water) for irrigation whereas in situ irrigation data is only accounting for surface
irrigation, thus higher estimated irrigation are expected.
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is solely dependent on satellite and reanalysis data. The delay between
retrieved irrigation using MSWEP products and observed irrigation
water amounts in Fig. 4d can be partly explained by this problem.

P(t) is also subtracted from I(t) thus influencing the final IR (t) es-
timation. Specifically, in poorly gauged basin with high special varia-
tion in rainfall rate, over/underestimation might occur in the irrigation
estimation. For instance, local precipitation around a station can in-
troduce tremendous error to the model as soil moisture at the pixel
scale would not increase, whereas, high rate of precipitation is re-
corded.

5.2. Noise in soil moisture data

It is well known that presence of the vegetation cover attenuate the
soil moisture signal and decrease its quality (Jackson and Schmugge,
1991). Therefore, there is this possibility that the algorithm is not re-
sponding to the increased irrigation in Pixel (1) but rather to the noise
generated by the denser vegetation cover in this pixel. To make sure
that the observed signal in Pixel (1) is due to increase in soil moisture,
the soil moisture variations at three adjacent pixels (i.e. Pixels (1), (A)
and (B)) are compared during the wet seasons of 2014 and 2015. The
result indicates that, when the main driver of the change is the same
(i.e. precipitation) the same dynamic is observed in the soil moisture
time series and the SM product is nearly insensitive to the vegetation
cover (see Fig. 12).

On the other hand, a weekly signal is observed in soil moisture time
series of Pixel (1) and (3) (see Fig. 7) that can be related to regular
irrigation application in the plain, but another credible explanation can
be the periodic error due to the orbital repeat cycle of the satellite (Su
et al., 2013). However, according to the AMSR2 data user's manual the
satellite repeats its original orbit every 16 days, whereas; a weekly
signal is observed at Pixel (1) and (3). This periodic signal is also not
observed in the non-irrigated pixels (Pixel (A), (B) and (C)) in the re-
gion (see Fig. 7). Moreover, according to the Iran water resources
management organization (IWRM), the fields in Pixel (1) in the Mian-
doab plain are receiving water 2 times every 15 days from Norouzloo
diversion weir, and thus it is probable that what is seen in the SM time
series is driven by the irrigation application in the region.

Erroneous retrieval can be interpreted as spurious irrigation, thus
pixels that are located in areas with complex topography, highly ur-
banized and close to water bodies should be removed from the analysis
(Koike, 2013). SM2RAIN needs a strong soil moisture signal from the
irrigation that can be received when a large fraction of the pixel is ir-
rigated all within a short period of time (e.g. several days). For instance,
most of the irrigation at pixel (1) is supplied from irrigation network
which due to the lack of storage facilities at the fields (Yekom
Consulting Engineers, 2016) is applied shortly after receiving the water
allotment. Thus, large area of the pixel are irrigated in a short period of
time (several days) and strong soil moisture signal (detectable by the
satellite) is created. It is also possible that the irrigation method impact
the model simulation. By way of example, the low efficiency irrigation
methods like flood irrigation, can increase the soil moisture to a greater
extent compare to drip irrigation, and hence, they are expected to be
better captured by SM2RAIN. This interesting aspect will be in-
vestigated in the future studies.

5.3. The choice of ET estimation method

As it is explained in the Results section, ETa as a measure of con-
sumptive water use makes a substantial contribution to the final esti-
mated irrigation by SM2RAIN. In this study two ET dataset, i.e. SM_ETp
(GLEAM) and WaPOR ETa, are adopted in Eqs. (3) and (4) respectively,
to estimate the irrigation. Better results obtained using the WaPOR ETa
in Eq. (4) as it uses more sophisticated and data-intensive algorithm
while using SM_ETp(GLEAM) in Eq. (3) only lead to capturing the ir-
rigation pattern. However, the results obtained by employing SM_ETp

(GLEAM), the linear approximation, is also an important achievement
because this equation (unlike the Eq. (4)) estimates the irrigation using
limited number of ancillary data and mainly based on the SM ob-
servations. On the other hand, new data-driven approaches has been
recently developed that can estimate ET based on the observed long-
term negative changes in SM time series (e.g. Akbar et al., 2018; Koster
et al., 2017; McColl et al., 2017). Thus the linear approximation, as the
main source of uncertainty in Eq. (3), can be replaced by these ET
parameterization techniques (called loss functions) and provides a
stand-alone irrigation estimation method based on microwave soil
moisture observation with higher accuracy.

5.4. Negative irrigation estimated by the model

Underestimation of rainfall by the model can result in estimation of
negative irrigation. This usually occurs in wet seasons when no irriga-
tion is applied to the fields. The negative bias can be a representative of
the SM2RAIN precipitation simulation error that has a direct impact on
estimating the irrigation. The comparison between the estimated ne-
gative bias (the model error) and positive bias (irrigation) in the irri-
gated pixels (1 and 3) shows that the average negative irrigation
(SM2RAIN error) is less than a third of average positive irrigation which
indicate the model has acceptable result in estimation of the irrigation
(see Table 6).

5.5. The bias caused by spurious soil moisture signal and unknown fraction
of irrigated area at each pixel

The spurious increase in soil moisture can be taken as the irrigation
signal. In this study, it is assumed that the estimated irrigation at the
largely non-irrigated pixels during the rainless irrigation period are
caused by these spurious signal, thus the irrigation is corrected by
subtracting the bias estimated in the largely non-irrigated adjacent
pixels. However, the choice of non-irrigated pixel is crucial. It should
share the same climate and rainfall pattern with the irrigated pixel, so
that the true soil moisture signal in the non-irrigated pixel is not re-
moved from the irrigated pixel (this issue can be addressed by selecting
an adjacent non-irrigated pixel). However, presence of small fraction of
irrigated area in the non-irrigated pixels is usually inevitable, further-
more; due to the coarse resolution of MW satellite (~50 km), the soil
moisture signal in the non-irrigated pixel might be affected by the
neighboring irrigated pixels. The choice of non-irrigated pixel with
minimum cropland area that is mostly surrounded by the other non-
irrigated pixels (as in Pixel C) can minimize the amount of the false
irrigation signal in the non-irrigated pixels.

The other limitation is, in a general domain, the information about
the potential locations of the irrigated areas may not be available. Thus,
estimation of the average irrigation depth in the irrigated pixels and the
detection of non-irrigated pixel would be difficult. This problem can be
overcame, to some extent, by using global irrigated area map (e.g.
(Ozdogan et al., 2010; Salmon et al., 2015)

Table 6
The estimated positive and negative irrigation (SM2RAIN error) in pixel 1 and 3
and also bias-corrected pixels i.e. (1-A) and (3-C), using in situ precipitation
data and WaPOR ETa; in SM2RAIN model the estimated negative irrigation is
set equal to zero, this simplification can introduce some error in the model
estimates but since the average negative irrigation is almost one third of the
average positive irrigation it would not have a considerable impact on the
model outcome.

Pixel 1 Pixel 3 Pixel 1 – Pixel
A

Pixel 3 – Pixel C

Mean Negative Irrigation −9.78 −10.74 −5 −8.49
Mean Positive Irrigation 35.42 38.37 22.4 25.82
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6. Conclusion

Irrigation agriculture is one of the biggest consumer of fresh water
resources, hence it is crucial to have an accurate measurements of ir-
rigation depth in cropland areas. Moreover, better measurements of
irrigation can contribute to improved irrigation efficiency and man-
agement. In this study, the SM2RAIN algorithm is exploited to quantify
the irrigation water in Miandoab plain (in Iran), mostly during the
rainless periods. The results indicate that SM2RAIN model, applied to
AMSR2-JAXA soil moisture product in the period 2012–2015, can
capture temporal pattern in irrigation, but systematically overestimate
the irrigation compare to the in situ data. This can be related to either
not including ground water resources in the in situ irrigation data or the
bias in the SM2RAIN-estimated irrigation. To remove the possible error,

the difference between simulated irrigation at an irrigated and non-
irrigated pixel (model bias) is calculated and the bias-corrected irriga-
tion is compared with in situ irrigation data at the monthly time scale.
The results shows that by correcting for the bias, the model is capable of
quantifying irrigation water consistent with observed data with average
R= 0.86 and RMSE = 12.89 (mm/month). The model is also sensitive
to the accuracy of the input data and using the more reliable ETa and P
data can boost the model performance by > 40% in terms of RMSE.

The spurious irrigation signal in the non-irrigation periods caused
by either the noise in soil moisture or error on observed rainfall data
can result in estimating negative irrigation. However, the results con-
firms that on average, the negative irrigation is less than a third of
estimated positive irrigation. Due to coarse resolution of the MW sa-
tellite, irrigation is only detected where large area, compare to the

Fig. 11. a) The simulated precipitation in pixel (1) and A and in situ precipitation at pixel (1) and, b) comparison between bias-corrected irrigation estimates at pixel
(1) and in situ irrigation at this pixel; highlighted period shows irrigation underestimation after the correction for bias.

Fig. 12. Soil moisture dynamic in wet season of 2014 and 2015 in Pixel (1), (A) and (B); it seems that adjacent pixels follow the same soil moisture pattern, although;
the vegetation density is different.
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satellite footprint (e.g. > 500 km2), are irrigated within a short period
of time (e.g. several days), thereby creating strong SM signal. However,
the SM irrigation signal can be still overshadowed by a rainfall event
when they occur simultaneously. So it is expected that model better
reproduce the irrigation signal in the regions with prolonged periods of
low (or no) rainfall.

Using a linear approximation for estimation of ETa allows capturing
the irrigation seasonality based on mainly one input (i.e. SM), however;
it leads to underestimation of ETa and consequently irrigation. This
limitation can be overcome by employing the recently-developed data-
driven approach (based on SM data) that estimate ETa through para-
meterization of the loss functions. Thereby, there is a good potential for
developing a stand-alone irrigation estimation method from microwave
SM observation with a higher accuracy.

The quality of soil moisture retrieval is also important. Pixels should
not containing urban areas, complex topography, marches and water
bodies. The low spatial resolution of AMSR2 soil moisture product
makes it impractical to capture the irrigation water of small irrigated
area and higher resolution products (e.g., by Sentinel-1 or SMAP en-
hanced 9 km product) should be employed in future investigations.
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