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Abstract: Considering variations in surface soil moisture (SSM) is essential in improving crop yield
and irrigation scheduling. Today, most remotely sensed soil moisture products have difficulties in
resolving irrigation signals at the plot scale. This study aims to use Sentinel-1 radar backscatter and
Sentinel-2 multispectral imagery to estimate SSM at high spatial (10 m) and temporal resolution (at
least 5 days) over an agricultural domain. Three supervised machine learning algorithms, multilayer
perceptron (MLP), a convolutional neural network (CNN), and linear regression models, were trained
to estimate changes in SSM based on the variation in surface reflectance and backscatter over five
different crops. Results showed that CNN is the best algorithm as it understands spatial relations
and better represents two-dimensional images. Estimated values for SSM were in agreement with
in-situ measurements regardless of the crop type, with RMSE = 0.0292 (cm3/cm3) and R2 = 0.92
for the Sentinel-2 derived SSM and RMSE = 0.0317 (cm3/cm3) and R2 = 0.84 for the Sentinel-1 soil
moisture data. Moreover, a time series of estimated SSM based on Sentinel-1 (SSM-S1), Sentinel-2
(SSM-S2), and SSM derived from SMAP-Sentinel1 was compared. The developed SSM data showed
a significantly higher mean SSM state over irrigated agriculture relative to the rainfed cropland area
during the irrigation season. The multiple comparisons (fisher LSD) were tested and found that these
two groups are different (pvalue = 0.035 in 95% confidence interval). Therefore, by employing the
maximum likelihood classification on the SSM data, we managed to map the irrigated agriculture.
The overall accuracy of this unsupervised classification is 77%, with a kappa coefficient of 65%.

Keywords: soil moisture; Sentinel-1; Sentinel-2; irrigation mapping; change detection; supervised
learning; machine learning

1. Introduction

Soil moisture content (SMC) is an essential factor in exchanging water, biogeochemical,
and heat fluxes between the earth and its surrounding atmosphere [1–3]. The generation of
surface runoff and the rate of water infiltration in the soil are also controlled by surface
moisture [4]. Moreover, the SMC variation is vital for precision farming applications since
soil water storage influences the irrigation scheduling and fertilizer rate in low rainfall
climates [5,6], especially for areas facing water scarcity [7–9]. In the past, before the advent
of remote sensing techniques, ground-based soil moisture sampling was the only solution
to measure soil moisture and observe its changes. Further, the soil moisture networks were
established for measuring the SSM [10].

Today, although many soil moisture networks exist to measure soil moisture at differ-
ent depths, such as the TERENO [11], OzNet [12], COSMOS-UK [13], and ISMN, they are
still not appropriate for monitoring SMC at the catchment or agricultural field scale due
to SMC spatial and temporal variations [14]. Thus, remote sensing technology provides a
suitable path for estimating soil moisture [15]. It allows us to explore a larger area in short
time intervals at a low cost, mainly due to recent advancements in sensors functionally [16].
According to the spectrum of electromagnetic waves reflected from the soil layer and
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received by satellite sensors, SMC can be estimated by establishing a physical relationship
between the soil moisture and the surface electromagnetic response [15]. Extensive studies
have evaluated the optical, thermal infrared, and microwave remote sensing (passive or
active) skills in estimating the SMC [15,17]. Each spectral domain has its own advantages
and limitations. Table 1 illustrates the parameters measured in each domain that are physi-
cally related to soil moisture. By measuring these parameters, an accurate estimation of the
SSM can be obtained.

Table 1. Summary of advantages and limitations of estimating the SMC using remote sensing techniques [15,16].

Spectral Domain Properties Observed Advantages Limitations

Optical soil reflection • fine spatial resolution
• broad coverage

• limited surface penetration
• cloud contamination
• many other noise sources

(dust or other air pollution)

thermal infrared surface temperature
• fine spatial resolution
• broad coverage
• physical well understood

• limited surface penetration
• cloud contamination
• perturbed by meteorological

conditions and vegetation

microwave

passive
• brightness temperature
• dielectric properties
• soil temperature

• low atmospheric noise
• moderate surface

penetration
• physical well understood

• low spatial resolution
• perturbed by surface

roughness and vegetation

active • backscatter coefficient
• dielectric properties

• low atmospheric noise
• moderate surface

penetration
• high spatial resolution
• physical well understood

• limited swath width
• perturbed by surface

roughness and vegetation

Microwave sensors have been successfully used to retrieve soil moisture. The ad-
vanced microwave scanning radiometer (AMSRE and AMSR2) [18], the advanced scat-
terometer (ASCAT) [19], soil moisture and ocean salinity (SMOS) [20], and soil moisture
active passive (SMAP) [21] are among the microwave sensors that produce soil mois-
ture products. Most of the above-mentioned soil moisture products have a coarse spatial
resolution (>25 km) that is not suitable for agricultural purposes (Figure 1) [7,22,23].
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Active microwave data from the synthetic aperture radar (SAR) sensors can be op-
erationally used to estimate SMC at high spatial resolution [24,25]. Due to the dramatic
increase in the soil dielectric constant with an increase in water content and the high
sensitivity of SAR data in X, L, or C band to the dielectric constant, radar microwave
data can be used to estimate the SSM [16]. Gruber et al. (2013) investigated the potential
of Sentinel-1 to capture local soil moisture variations with high radiometric accuracy by
investigating the capability of the MetOp ASCAT data and Envisat ASAR [26]. The results
showed that spatial soil moisture variations could not be captured by these coarse reso-
lution SAR instruments. However, by launching the Sentinel-1A in 2014, a C-band SAR
mission that was followed by Sentinel-1B in 2016, an unprecedented opportunity to obtain
global 10–20 m SAR images and consequently SSM was provided for every 6–12 days. For
instance, Bauer et al. (2018) presented a method to retrieve the global SSM from Sentinel-1
using a change detection algorithm based on a regression approach [27]. They used a
dynamic Gaussian upscaling method to obtain an SSM map in 1 km spatial resolution.
In the SSM estimation in 1 km, the method demonstrated its capability to measure soil
moisture at high spatiotemporal resolution and thus has become particularly valuable
when changes in local hydrology due to rain or irrigation have to be captured.

On the other hand, when the soil becomes moist, its color will be darkened and cooled,
so using the optical/thermal image is also an attractive option for estimating SMC based
on surface spectral reflectance [28–31] or surface temperature and thermal inertia [32].
An experiment was conducted in 2002 in a laboratory setting, looking at the reflected
shortwave radiation (400–2500 nm) from four soil types at varying moisture contents [29].
The observed changes in soil reflectance showed a nonlinear relationship with moisture
content that was described by an exponential model. In addition, if the SSM is expressed
as the degree of saturation, the model is similar for different soil types [29]. Another study
in 2019 investigated the soil surface response to the SSM variations using Landsat 8 images.
A total of 103 samples of soil were analyzed using hyperspectral features, which indicated
that SSM adversely affected soil reflectance, particularly within the NIR-SWIR region [31].
Launching Sentinel-2A in 2015, a mission of continuous earth observation, which was
followed by Sentinel-2B in 2017, provided a potential solution to estimate SSM at high
resolution. As proof, Yue et al., in 2019, developed indices for estimating bare soil moisture.
These indices are made from differences in water absorption between shortwave-infrared
and surface NDVI. This study concludes that the proposed SSM indices perform well when
the SSM ranges between 0–0.5 cm3/cm3 but do not perform well when it reaches beyond
0.5 cm3/cm3. Moreover, water absorption between shortwave-infrared bands is linear
with SSM [33]. A study in 2020 investigated Sentinel-2 images to estimate SSM in rainfed
and irrigated fields. It improved the spatial and temporal resolution of soil water content
mapping by means of the optical trapezoid model driven by Sentinel-2. In this study, two
scenarios were considered for optical trapezoid parameterization. The first scenario was
based on a simple regression model to obtain the optical trapezoid parameters, and the
second scenario determined the optical trapezoid parameters through a nonlinear model.
The relationship between trapezoid parameters and SSM was investigated. They found that
the nonlinear model better detects temporal and spatial soil moisture changes over different
environments [34]. In addition, some studies have been conducted on the synergistic use
of Sentinel-1 and Sentinel-2 imagery to take advantage of both satellites [24,25,35,36].

The virtue of mapping SSM in a high spatiotemporal resolution is becoming especially
valuable when local hydrology changes due to rainfall or irrigation must be captured [27]. A
study [8] illustrated that SSM estimation even in 1 km can quantify the impact of irrigation
or rainfall in agricultural fields, which cannot be detected by downscaling soil moisture
products from coarser sensors. Therefore, if the rainfall data are available, based on an
inversion of soil water balance, high spatial SSM data can derive the amount of irrigation
over agricultural lands [5,37,38].

In light of the above insight, although many studies tried to estimate SSM at the high
spatial resolution, there is still a significant gap in estimating SSM in agricultural lands
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without additional data [8,39]. Therefore, this study focused on the agricultural domains
with different crop types to propose a method to retrieve the SSM with reasonable accuracy.

This study first aims to answer the question of how SSM variations affect the soil
surface spectral signature captured by Sentinel-2 and Sentinel-1 satellites over the agri-
cultural domain. Second, it investigates which machine learning algorithm best estimates
the SSM without the typical limitations on recent soil moisture maps (e.g., the spatial
and temporal resolution). This method can be applied to any agricultural field since it is
independent of other information such as soil type, crop type, land cover, and so forth.
This method is sensitive to the effects of soil moisture variation on the surface response in
electromagnetic waves.

The main objectives of the present study are as follows: (i) producing a soil moisture
map based on Sentinel-2 images acquired over the five separate plantation zones; (ii) simi-
larly, producing a soil moisture map based on Sentinel-1 images in the same study area;
(iii) producing and comparing the generated soil map with ground measurements and
SMAP-Sentinel1 1 km soil moisture product; and (iv) mapping the irrigated agriculture
using the derived SSM data. The resulting soil moisture data can be used in irrigation
scheduling and distinguishing the irrigated and rainfed agriculture.

2. Study Area and Dataset Description
2.1. Study Area

The study area consists of five farms located in Tehran and Alborz provinces in Iran.
The total area of agricultural land is about 54 acres. Tehran farms use drip irrigation, while
Alborz farms are equipped with a center pivot and sprinkler irrigation system. Figure 2
shows the location of the farms and the crop types.
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Farms with different crop production were investigated for two main reasons: first, it
is crucial to consider the soil texture and soil chemical/physical properties such as intrinsic
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soil color, soil roughness, and various local incident angles in agricultural fields; second,
we planned to consider different plant growth stages [40] in our study. As the vegetation
needed to be sparse enough (NDVI < 0.2) to prevent signal attenuation and soil surface
coverage, the study was carried out in the early stages (sowing and emergence) of the
crop’s growth cycle. The site specifications, location, and climate type with the number of
field samples are presented in Table 2.

Table 2. Characteristics of the soil sampling fields where the area name is defined as the name of the cultivated crop,
followed by geographical area location, area, and the atmospheric model.

ID Crop Variety Soil Type Latitude Longitude Area (m2) Atmospheric Model Field
Samples

I Alfalfa Sandy Clay 35.3 51.58 64,487 moderate semi-arid 48
II Corn Loam 35.8 50.95 155,136 moderate semi-arid 72
III Cotton Silt Loam 35.35 51.62 32,203 moderate semi-arid 20
IV Potato Loam 35.8 50.95 31,932 moderate semi-arid 18
V bare soil Loam 35.8 50.95 97,018 moderate semi-arid 12

total 170

The average annual temperature in the study area is 17.8 °C and the warmest month
is July with an average temperature of 31.1 °C. The region receives 244 mm of precipitation
throughout the year. The study area land use map is shown in Figure 3.
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2.2. Data Collection (Satellite Data and Ground Measurements)
2.2.1. Sentinel-1

Sentinel-1A and Sentinel-1B were launched in April 2014 and April 2016, respectively,
as a part of the Copernicus program. Synthetic aperture radars (SAR) are indifferent to
weather conditions and provide data in a dual- or single-polarization operation in the
C-band (5.4 GHz) and interferometric wide (IW) swath mode. The Level-1 ground range
detected (GRD) data from the SLC product with a spatial resolution of 10 m and revisit
frequency of 6 days (3 days at the equator and less than one day at high latitudes) can
be acquired from the sentinel-hub website (https://www.copernicus.eu/en, accessed on
10 October 2019).

https://www.copernicus.eu/en
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GRD images in VV and VH polarization in ascending orbit (between 5 p.m. and 6 p.m.
local time) are obtained according to Table 3.

Table 3. Scheduling of the study site measurement campaigns and satellite passes.

Satellite Name Date Mode/Level Date Mode/Level

Sentinel-2
24 May 2019 2B 7 July 2019 2B
22 July 2019 2A 27 July 2019 2B

6 August 2019 2B 10 October 2019 2A

Sentinel-1
18 August 2019 level_1A GRD

11 September 2019 level_1A GRD
4 December 2019 level_1A GRD

2.2.2. Sentinel-2

The Sentinel-2 constellation is a land-monitoring mission developed by the European
Space Agency (ESA), which comprises two satellites with multispectral imaging, Sentinel-
2A and Sentinel-2B, launched in 2015 and 2017, respectively. The constellation provides
global coverage with a revisit time of 5 days. The MSI sensor mounted on Sentinel-2
captures 13 spectral bands, from visible to short wave infrared (SWIR) at three different
spatial resolutions (10, 20, and 60 m). To generate images with an equal spatial resolution in
all bands, images were resampled to 10 m. The images were obtained from (https://www.
copernicus.eu/en, accessed on 10 October 2019), which releases data in the “Level-2A”
format. This product (Level-2A) includes radiometric, atmospheric, and cloud corrections,
so no other processing is required [41].

The Sentinel-2 images are sensitive to weather conditions. Therefore, all ground
samplings were performed in favorable weather conditions without any clouds. Regarding
ground sampling days, several Level-2A images in descending orbit (between 11 a.m. and
12 a.m. local time) were taken according to Table 3.

2.2.3. Soil Moisture Active Passive (SMAP)

SMAP was launched in 2015 and planned to provide high-resolution global soil mois-
ture data through the joint use of L-band radar and radiometer measurements. However, a
few months into the mission, the radar became inoperable, and only the 36 km radiometer-
based SSM product continued to provide global coverage every 2–3 days. The SMAP
team used two approaches to retrieve the high-resolution capability of SMAP: (i) taking
advantage of the overlapping radiometer footprint to create a higher resolution product
(SMAP Enhanced 9 km) and (ii) combining SMAP radiometer measurements with an
available SAR mission (i.e., Sentinel-1). In this study, the SMAP-Sentinel1 1 km prod-
uct [42] is used as a satellite product reference to compare with SSM-S1 and SSM-S2 data
(https://search.earthdata.nasa.gov, accessed on 10 October 2019).

2.2.4. Ground Measurements

For ground sampling, agricultural fields were classified according to their crop type.
Sampling was performed when the plants were in the early stages of growth (NDVI < 0.2),
so the surface was not covered with plants. After the soil surface was cleaned, the samples
were taken from a depth of about 10 cm. In total, 170 samples (110 samples for multispectral
images and 60 samples for SAR images) were taken. The samples’ gravimetric soil moisture
content was obtained using the drying process in the laboratory depicted in Figure 4. By
measuring the soil density, the volumetric soil moisture was also calculated. The calculated
moisture represented the average SSM of the corresponding pixel.

https://www.copernicus.eu/en
https://www.copernicus.eu/en
https://search.earthdata.nasa.gov
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3. Methodology

As described before, this study investigates the soil spectral response to SSM variation
over irrigated agriculture. For this purpose, a semi-empirical model was established to
estimate the SSM. The modeling process is shown in Figure 5.

3.1. Soil Multi-Spectral Response
Sentinel-2 Images

This stage aims to develop a semi empirical model based on Sentinel-2 imagery. The
inputs of the model include the soil surface reflectance in different bands captured by
Sentinel-2 and the crop type. The output of the model is the SSM as illustrated in Equation
(1). The model assumes that since all conditions (e.g., soil texture, vegetation cover, product
type, and so forth) remain constant in each field sampling, changes in the soil surface
reflectance must be related to the SSM difference. Therefore, the first step is to define the
driest pixel and put it as the base pixel (BP). By comparing the BP with other samples, the
influence of the SSM on soil surface response could be investigated, and this relationship
could be modeled, assisted by machine learning algorithms. This model would be more
accurate if the training samples covered all possible soil moisture content values. An
experiment was designed to irrigate the field (V) at different times before the satellite
overpass to train the model with a wide variety of SSM. Each circle was watered by a
sprinkler 2, 4, 8, 10, 15, and 24 h before the satellite overpass, and the closer start time
corresponded with a wetter soil state.

Consequently, different SSM zones were created at the time of satellite overpass, as
shown in Figure 6. Since each sprinkler can water a circle with a radius of 15 m, each zone
consists of nine Sentinel-2 pixels that are entirely or partially bounded by the sprinkler
circle (Figure 6). Therefore, due to the conditions, the results show how surface reflectance
is affected by SSM.
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This procedure was repeated for other study fields as well. Overall, 110 different soil
samples were collected during the field campaign’s specific days mentioned in Table 3.
From this point on, the soil moisture obtained by this method is called SSM-S2.

SSM = f (B2, B3, B4, B5, B6, B7, B8, B10, B11, crop type) (1)

3.2. Soil Backscatter Response
Sentinel-1 Image

A semi empirical model is established based on Sentinel-1 images. Since all circum-
stances such as surface roughness, soil properties, surface features, and radar properties
remain constant in each sampling of each field, the model assumes that the SSM is a func-
tion of the surface backscatter in both vertical (σ0

VV) and horizontal (σ0
VH) polarization and

the local incident angle (θ), as described in Equation (2). Therefore, the surface backscatter
in vertical and horizontal polarization and the local incident angle were used as input
and the SSM is used as the output of the model. Additionally, to consider the effect of
the vegetation cover and soil conditions, we defined a polarization ratio (PR = σVV

σVH
) and

graphed this relationship. As this model is based on the Sentinel-1 images, it is called
SSM-S1. For SSM-S1 training, 60 points were sampled to investigate the influence of the
SSM on input parameters (σ0

VV , σ0
VH , θ).

Preprocessing the Sentinel-1 images, according to the ESA statement, the GRD prod-
ucts preprocessing has some steps include applying orbit file, thermal noise removal,
calibration, speckle filtering, Range Doppler Terrain Correction, and conversion to dB. As
the last step of the preprocessing workflow, the unitless backscatter coefficient is converted
to dB using a logarithmic transformation.

SSM = f
(

σ0
VV , σ0

VH , θ
)

(2)

3.3. Soil Moisture Retrieval and Validation

Three machine learning algorithms, including multilayer perceptron (MLP), convo-
lutional neural network (CNN), and linear regression, were used to estimate SSM from
Sentinel-1 and Sentinel-2 retrieval. Studies showed that MLP has the ability to solve a
complex problem such as fitness approximation [43]. The CNN algorithm is similar to
MLP, except that it can recognize spatial relations by taking a tensor instead of a vector as
the input. Linear regression is a supervised learning algorithm that predicts a dependent
variable value based on some given independent variables. These algorithms were used to
create a relationship between features and targets. Each algorithm used 80% of the data
for training and 20% for validating the model performance (training and validating data
were selected randomly). For validating the model, the estimated SSM was compared with
ground measurements. This process was repeated 100 times, and the RMSEs were reported.
Since CNN has the best performance among other algorithms, it is applied to estimate SSM
in optical and radar images.

3.4. Comparison of the SMAP Soil Moisture and Proposed SSM

Although the validity of the model was verified using ground data, this section aims to
compare the result of the proposed method with the currently available high-resolution soil
moisture product (SMAP-Sentinel1). The spatial resolution of SMAP-Sentinel1 soil moisture
is 1 km, while proposed methods retrieve the SSM at 10 m resolution. Nevertheless, it
will be possible to investigate the changes in SSM over time for a given area. To compare
the performance of SMAP-Sentinel1 and SSM-S1 and SSM-S2 soil moisture products, two
study areas consisting of the agricultural fields (II and V) were selected, and the time series
of SSM was compared from 1 January 2019 to 1 January 2020. As SMAP went into safe
mode in two months of 2019 (June and July), no data were collected during this period. In
Sentinel-2 images, a cloud filter was applied in the Google Earth Engine, and dates with
more than 20% of cloud coverage were removed from the analysis. Moreover, we choose
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not to run the SSM-S2 algorithm during the growing season (NDVI > 0.2) due to the ground
coverage [40].

3.5. Image Classification

A pixel-based classification method (unsupervised classification) was used to cluster
similar pixels into specific groups without requiring the user to provide sample classes. For
this purpose, maximum likelihood classification was applied to the SSM result into four
classes: urban, dry farming, rangeland, and irrigated agriculture. This classification was
performed only based on changes in surface soil moisture to identify irrigated agriculture.
The overall accuracy, kappa index, and commission and omission error are reported for the
classified map.

4. Results and Discussion
4.1. Sentinel-2 Multispectral Response of SSM

The soil surface reflectance captured by Sentinel-2 is highly dependent on SSM, as
depicted in Figure 7. Indeed, when SSM increases, the soil color darkens and the soil
reflectance decreases [44]. Although reflectance in all the Sentinel-2 bands decreases with
increasing soil moisture, the visible bands B2 (blue), B3 (green), and B4 (red) have the
highest negative correlation with the SSM (R < −0.76). However, previous studies showed
that the longer wavelengths are more sensitive to the SSM variation if it increases more
than 0.2 cm3/cm3 [29]. Since, in irrigation events, the SSM is almost about 20 cm3/cm3

due to drainage and evapotranspiration processes, Sentinel-2 bands are a good choice for
SSM estimation. Moreover, it is possible to monitor soil moisture at high resolution using
multispectral cameras mounted on drones or UAVs over agricultural fields [45].
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4.2. Sentinel-1 Backscatter Response of SSM

One of the factors that affect the surface backscatter is the amount of soil moisture
content. Higher backscatter is observed by increasing the SSM [46]. In low soil moisture
content, other factors such as soil roughness affect the surface backscatter. Therefore,
to eliminate other factors, graphs are plotted for SSM greater than 5 cm3/cm3 [47]. For
better presentation, the results are depicted in two separated graphs; the first is σvh

σvv
versus

soil moisture and the second is σvv versus soil moisture as depicted in Figure 8. Dual
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polarized images ( σvh
σvv

or σhh
σhv

) help to better understand the relationship of soil moisture
and surface backscatter since this PR is sensitive to surface features and considers the effect
of vegetation and soil conditions [48]. Figure 8a presented σvh

σvv
radar versus soil moisture,

and Figure 8b illustrated the σvv versus soil moisture. Moreover, it can be concluded from
these two graphs that σvh increases at a higher rate relative to the σvv by increasing the
soil moisture.
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4.3. Validation of the proposed method

The relationship between the SSM and satellite imagery is a very complex relationship.
The one-way analysis of variance (ANOA) illustrated that there is a linear (p < 0.001) or
nonlinear (p < 0.021) relationship between SSM and soil reflectance. However, Figure 9
shows deep learning algorithms perform better than the multiple regression analysis.
Among deep learning algorithms, CNN is performing better than MLP as it considers the
nearby pixels to understand spatial relationships. The mean value of RMSE in the CNN
algorithm was 0.0292 cm3/cm3 for multispectral images and 0.0317 cm3/cm3 for radar
data. Figure 10 shows the validation of the multispectral and radar images separately.
Moreover, the model errors (residuals) distribution calculated by computing the absolute
difference between ground measurement and the estimated SSM is shown.
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Figure 10. Soil moisture was retrieved by the proposed method as a function of soil moisture
measured in the reference fields. (a) Soil moisture retrieved by multispectral images of Sentinel-2;
the mean RMSE is 0.0292 cm3/cm3 and model error distribution. (b) Soil moisture retrieved by
radar images of Sentinel-1; the mean RMSE is 0.0317 cm3/cm3 and model error distribution of
radar images.

4.4. Comparison of the SMAP and Proposed SSM Models

Since there is a spatial mismatch between the SMAP-Sentinel1 (1 km) and Sentinel
1 and 2 (10 m) SSM products, and the machine learning algorithm only trained over
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the case study plots, we choose to compare the SMAP-Sentinel1 with SSM-S1 and SSM-
S2 temporally rather than spatially according to Figure 11. As illustrated in this figure,
the SSM-S1 is in better agreement with the SMAP-Sentinel1 relative to the SSM-S2. The
SMAP-Sentinel1 uses an L-band radiometer, which is less affected by the dense vegetation
compared to the Sentinel-1 radar that operates in the C band. This explains the significant
difference in SSM estimation (March to May) by Sentinel-1 and SMAP-Sentinel1. The
SSM-S2 model is susceptible to surface coverage, especially after the plant’s germination.
Thus, when the NDVI is greater than 0.2, this algorithm could not work properly, and we
masked the data. The acquisition time of Sentinel-2 is about 11:16 a.m, but the acquisition
time of Sentinel-1 is about 5:37 p.m. According to the study mentioned in the introduction
section [49], although the soil moisture from a rain event can be observed up to 3 days after
rainfall, the situation is different in irrigation events. The rate and the time of irrigating are
less than the rainfall. Runoff and puddling are rarely observed in irrigating, so the root
zone layer is less likely to be saturated. Moreover, on rainy days, the weather is mostly
cloudy and the temperature is low. So the evaporation rate after rainfall is much lower
than the evaporation rate after an irrigation event. In our region, due to percolation and
evapotranspiration processes, the surface soil moisture becomes dry entirely in less than
24 h. We examined this using a sprinkler that irrigated a part of the land for about one
hour. After that, the soil moisture was measured at a specific point near the sprinkler every
15 min. As Figure 12 shows, The SSM began to decrease after irrigation stopped and after
about 3 h, it lost about 70% of its moisture. Therefore, as most of the irrigation occurred in
the morning and the soil begins to dry out in the evening, the SSM-S2 shows an entirely
different time series from the SSM derived from Sentinel-1 or SMAP.
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4.5. Locating Agricultural Area with SMC Classification

SSM-S1 and SSM-S2 are used to detect the irrigated area using unsupervised classi-
fication. As illustrated in Figure 13, farms are detected in irrigated agriculture and dry
farming classes; moreover, the city area is recognized as well. To better understand this
classification, an aerial true-color image of the same place and the same time is derived
from google earth images depicted beside the classification. The overall accuracy is 77%
the kappa coefficient is 65%, and the commission error for detecting irrigated agriculture
is 56%.
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5. Conclusions

This study aims to produce a soil moisture map at a high spatial resolution applicable
for agricultural monitoring at a plot scale. This estimation was performed using Sentinel-1
(SSM-S1) and Sentinel-2 (SSM-S2) satellite imagery. This study showed the CNN machine
learning algorithm could estimate the SSM precisely. The RMSE is 0.0292

(
cm3/cm3) in

SSM-S1 and 0.0317
(
cm3/cm3) in SSM-S2 data. Thus, Sentinel-1 images are more suitable

for estimating soil moisture.
In the second part of the study, we found that the proposed SSM product is in good

agreement with the SMAP-Sentinel1 soil moisture product. The derived SSM is also used to
classify the irrigated and non-irrigated areas. To achieve that, an unsupervised classification
was implemented on the soil moisture map and clustered the area into four classes (urban,
dry farming, rangeland, and irrigated agricultural area) with an overall accuracy of 76%.

This study shows the ability to detect the irrigated agriculture from rainfed agriculture.
Moreover, it is possible to detect the irrigated agriculture based on the SSM spatial variation
up to 7 h after irrigation in a semi-arid region. With this results, the number of irrigation
events on agricultural lands could be identified if the optical images are received in less
than daily temporal resolution. As this study can map the SSM in high resolution, future
work will involve implementing this method to quantify irrigation amounts over the
agricultural area at plot scale.
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