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Abstract 
Surface water quality management needs water contaminants monitoring and information about water 
quality parameters. Field measurement is a costly, time-consuming procedure that limits information about 
the whole surface of a water body. Remote sensing methods are valuable ways that prepare water quality 
information using different characteristics between reflectance detected from each parameter. However, 
there are some limitations to choosing and classifying satellite bands for various parameters. This article 
discusses the Sentinel-2 band selection to measure water quality parameters in the Gorgan Gulf. 
Considering different bands for extracting an approximate quantity of Total Dissolved Solids, Salinity, 
Electrical Conductivity, Chlorophyll-a, and Turbidity, a Bayesian Linear Regression model has been used 
for detecting the correlation between different Sentinel-2 bands and field measurements on two dates with 
a one-year interval. The result declares that using all of the Sentinel-2 bands to increase the accuracy of the 
quantitative results is not a reliable choice. Even if some predictions' accuracy seems rational, spectral 
signatures should be considered to extract dependable equations for water quality measurements utilizing 
remote sensing. 
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1. INTRODUCTION 
 

More than half of the world's population lives near surface waters, and their activities cause increasing water 
contaminants[1]. Anthropogenic effects on surface waters include intentional or accidental discharge of 
domestic, industrial, and municipal wastewater and the use of chemical pesticides in drained agricultural 
lands[2]. Water pollution by anthropogenic activities leads to various harmful effects like threatening human 
health, preventing marine activities such as fishing, and disrupting water quality to use in various 
applications[3]. Among surface water resources, gulfs' water quality is more important because its 
contaminants can threaten the health of terrestrial and aquatic organisms by creating a dead zone[4, 5]. 
Accordingly, surface water quality monitoring is a critical feature that facilitates managing water resources, 
detecting contaminants, and controlling their harmful effects on human health. Decision-makers also can use 
these data to conduct protection programs and policies. 
Water quality parameters measurement could be done using traditional methods (boats and portable sensors), 
but these methods are expensive and time-consuming[6]. In addition, these methods are point-based and could 
measure and extract water quality parameters only on limited points. Due to point sampling in traditional 
methods, to predict values at points where measurements have not been made, it is necessary to interpolate. As 
a result, some errors would occur in predictions. Nowadays, satellite remote sensing techniques are among the 
best alternatives to traditional water quality measurements [7]. Although using remote sensing techniques to 
measure water quality parameters is an approximate method, it provides wide coverage[8], reduced costs[9], 
increased measurement speed and accuracy[1], and reduced labor requirements[10]. Various parameters such 
as Total Suspended Solids (TDS)[11], Colored Dissolved Organic Matter (CDOM)[12], Chlorophyll-a (Chl-
a)[13], Salinity[14], Electrical Conductivity (EC) [15], Turbidity[16] and Sea Surface Temperature (SST)[17] 
can be measured using remote sensing. 
Remote sensing for water quality parameters estimation has two key factors. The first is the algorithm used to 
detect the relationship between reflectance from different spectral bands of the satellite, and the second is the 
band selection for every parameter. Different Machine Learning (ML) algorithms[18] and other statistical 
algorithms such as Regression[19] have been used to find the relation between satellite bands' reflectance and 
field measurements. Some algorithms, such as regression, are based on weighting input spectral bands. Others, 
such as Artificial Neural Network (ANN) algorithms, are black boxes that do not need physical pre-
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information; in these methods, all bands enter the model, and the model decides which are more correlated to 
the target parameter. 
In this article, Bayesian Linear Regression (BLR) has been used to detect the relationship between Gorgan Gulf 
field measurements of TDS, Salinity, EC, Chl-a, and Turbidity and reflectance values provided from Sentinel-
2 spectral bands. To recognize the best band selection, two dates field measurement correlation with Sentinel-
2 two sets of bands reflectance values have been compared. The final surface water quality map of each 
parameter has been exported for the best band combination. The study's primary goal is to indicate the effect 
of two sets of Sentinel-2 spectral bands on the water quality parameters' prediction accuracy. This study also 
aims to evaluate the BLR model's capability to predict the Gorgan Gulf water quality parameters. 
 
2. STUDY AREA 
 
Gorgan Gulf (Figure 1), the largest gulf in the Caspian Sea with a maximum depth of 4 meters, is home to a 
variety of aquatic species. This gulf is located in the southeast of the Caspian Sea within longitude of 
53°34'56.351"E to 54°2'34.634"E and latitude of 36°46'40.287"N to 36°56'13.326"N. The Gorgan Gulf area 
extracted by Sentinel-2 imagery on 11 September 2020 was 377 square kilometers and has been decreased to 
355 square kilometers at 28 June 2021. The maximum water depth of the gulf is located near the southern side 
of Ashuradeh and decreases from east to west, but in general, the gulf is one of the shallow water sources. 
Cities around the gulf whose sewage disposal directly affects the pollution of the bay water are Bandar-e-Gaz, 
Bandar-e-Turkmen, Gomishan, and Kordkoy. 

 

 
Figure 1: Gorgan Gulf location and area at 28 June 2021. 

3. METHOD 

 
3.1. Data 
 
3.1.1. Satellite Data 
 
The Sentinel-2 mission provides high-resolution, multi-spectral images to use in different fields of study. 
Sentinel-2 Multispectral Imagery (MSI) data has 13 spectral bands ranging from visible to short wave infrared 
(SWIR) spectral region with a high spectral resolution (10m to 60m) and a radiometric quantization of 12-
bit[16]. Bands' information is provided in Table 1. The satellite images of two dates (11 September 2020 and 
28 June 2021) were downloaded using Google Earth Engine (GEE). Also, all of the computational processes 
on satellite images were done utilizing GEE. 
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Table 1: Sentinel-2 bands in the range of visible to SWIR spectral region[20]. 

Name Resolution Wavelength Description 

B1 60 meters 443.9nm (S2A) / 442.3nm (S2B) Aerosols 
B2 10 meters 496.6nm (S2A) / 492.1nm (S2B) Blue 
B3 10 meters 560nm (S2A) / 559nm (S2B) Green 

B4 10 meters 664.5nm (S2A) / 665nm (S2B) Red 
B5 20 meters 703.9nm (S2A) / 703.8nm (S2B) Red Edge 1 
B6 20 meters 740.2nm (S2A) / 739.1nm (S2B) Red Edge 2 
B7 20 meters 782.5nm (S2A) / 779.7nm (S2B) Red Edge 3 

B8 10 meters 835.1nm (S2A) / 833nm (S2B) Near-Infrared (NIR) 
B8A 20 meters 864.8nm (S2A) / 864nm (S2B) Red Edge 4 

B9 60 meters 945nm (S2A) / 943.2nm (S2B) Water vapor 
B11 20 meters 1613.7nm (S2A) / 1610.4nm (S2B) SWIR 1 
B12 20 meters 2202.4nm (S2A) / 2185.7nm (S2B) SWIR 2 

 
3.1.2 Field measured Data 
 
Sampling in the Gorgan Gulf was done when the Sentinel-2 satellite was passing above the gulf. Seventy-two 
stations were sampled using motorboat in two days for each satellite pass date. Among all the stations, thirty-
one stations belonged on 11 September 2020, and forty-one were on 28 June 2021. Locations of the stations 
for each date are displayed in Figure 2. TDS, Salinity, EC, Chl-a, and Turbidity values for each station were 
measured using field sensors. The computational procedures were done using these values after preprocessing 
and cleaning from noisy data. 
 

 
Figure 2: sampling stations at (A) 11 September 2020 and (B) 28 June 2021 with Gorgan Gulf border extracted by 

Sentinel-2 image at mentioned dates. 

 
3.2. Bayesian Linear Regression (BLR) Model 
 
The basics of BLR are available in [21]. The most important reason the model was chosen was the low 
computational cost and band selection using the statistical distribution of the predictors. All BLR models were 
created using the Rtx application[22–24]. Field measured data for each parameter was the dependent variable, 
and the Sentinel-2 reflectance for each band at the same location of the field measured data was the predictor 
of the model. Twenty percent of values were separated randomly to test and validate the model for each 
parameter at each date. At the next steps, parameters with a coefficient of variation of more than 30 percent 
were eliminated, respectively. This repeated until all model parameters' coefficients of variation became lower 
than 30, or eliminating them significantly changed the sigma coefficient of variation. In each step, the R-factor 
value was checked not to be lower than the expectation. All the steps can be followed in Figure 3. After each 
step, model predictions vs. observation plots are checked and exported. The process was done for all five 
parameters with two different sets of bands explained in the following parts. 
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Figure 3: BLR Model flowchart. BCV is the abbreviation of "Bands Coefficient of variation," and SCV is the 

abbreviation of "Sigma's Coefficient of variation." 

 
3.2.1. BLR Model Using Seven Bands 
 
The BLR model for each date and parameter was made using Sentinel-2 seven bands' reflectance. The bands 
were: B1(Aerosols), B2(Blue), B3(Green), B4(Red), B8(NIR), B11(SWIR1), B12(SWIR2). Because of these 
bands' different resolutions (10m to 60m), all of them were aligned with 10m resolution.  
 
3.2.2. BLR Model Using Four Bands 
 
In this part, reflectance values of Sentinel-2 four bands were used for creating the BLR model. The bands were: 
B2(Blue), B3(Green), B4(Red), B8(NIR), and the model was created for each parameter at both dates. There 
is no need to change images' resolution because the bands' resolution equal 10m. The model has been made for 
two main reasons. The first reason is that lowering the number of the input bands to the model reduces 
computational costs, and the second reason is based on water spectral signature. Both clean water and water 
with phytoplankton reflectance wavelength are in the range of 0 to 0.8 micrometer[25]. The four selected bands 
cover the range and simultaneously reduce the number of input bands. 
 
4. RESULTS AND DISCUSSION 

 
4.1. BLR Model Results 
 
The best BLR model's prediction vs. observation plot for all parameters can be followed in Error! Reference 

source not found.. As explained in part 3.2., if the raw input data did not have the minimum expected value 
for the R-factor, the natural logarithm of the data would be considered to predict parameters' values. Figure 4 
indicates that natural logarithm input has been used for seven bands on 11 September 2020 of Salinity, Chl-a, 
and Turbidity; four bands on 11 September 2020 of TDS, EC, Chl-a, and Turbidity; seven bands and four bands 
on 28 June 2021 of Chl-a, and Turbidity. Bands selected for each date and the R-factor for each are indicated 
in Table 2. Based on Figure 4 and Table 2, it could be concluded that natural logarithm input is better for 
chlorophyll-a and turbidity prediction. According to Table 2, the R-factor of four bands input is lower than that 
of seven bands input for both dates and all of the parameters. Although R-factor is not the determinant 
parameter and there are other statistical indexes and values, such as Root-Mean-Square Error (RMSE), that 
should be compared, it could be concluded the BLR model fit reduces when using four bands as the input. 
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Figure 4: BLR model predictions vs. observation scatter plot for seven bands at 11 September 2020 for (A) TDS, 

(E) Salinity, (I) EC, (M) Chl-a, and (Q) Turbidity; four bands at 11 September 2020 for (B) TDS, (F) Salinity, (J) 

EC, (N) Chl-a, and (R) Turbidity; seven bands at 28 June 2021 for (C) TDS, (G) Salinity, (K) EC, (O) Chl-a, and 

(S) Turbidity; four bands at 28 June 2021 for (D) TDS, (H) Salinity, (L) EC, (P) Chl-a, and (T) Turbidity. 

 
SWIR bands wavelength (1613.7nm to 2202.4nm) are more than water spectral signature, and using them as 
predictors is not rational. Band-3(Green) is presented in all of the predictors, and the reason is that the peak of 
the water spectral signature occurs near its wavelength (560nm). Conclusively, the band is one of the best 
predictors for water quality parameters. Band-1(Aerosols) is affected by atmospheric particles because of its 
wavelength (444nm). In this regard, this band cannot be chosen as the best band for parameters prediction. 
Although Band-8(NIR) contains lower reflectance from water than bands with lower wavelengths, it is valuable 
for vegetation prediction because vegetation spectral signature peak is in the same wavelength range as this 
band. As a result, Band-8 could be used to detect and approximate chlorophyll-a or other parameters with 
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vegetation basis in water. Band-2(Blue) and Band-4(Red) are two bands in the range of water spectral signature. 
These two bands could be helpful in some water quality parameters measurement. 
 

Table 2: selected bands and R-factor for each parameter at each date. 

  11 September 2020 Sampling 28 June 2021 Sampling 

parameter 

7 Bands 4 Bands 7 Bands 4 Bands 

Selected 

bands 

R-

factor 

Selected 

bands 

R-

factor 

Selected 

bands 

R-

factor 

Selected 

bands 

R-

factor 

𝑻𝑫𝑺 (
𝒈

𝑳
) 

B2(Blue), 
B3(Green) 0.7944 B2(Blue),  

B3(Green) 0.7935 
B1, 
B2(Blue), 
B4(Red) 

0.8889 B2(Blue),  
B3(Green) 0.8328 

𝑺𝒂𝒍𝒊𝒏𝒊𝒕𝒚 (
𝒈

𝑳
) 

B1, 
B3(Green), 
B8(NIR), 
B11(SWIR1), 
B12(SWIR2) 

0.8727 
B3(Green), 
B4(Red), 
B8(NIR) 

0.8013 B1, 
B2(Blue) 0.9093 B2(Blue) 0.8976 

𝑬𝑪 (
𝒎𝒔

𝒄𝒎
) 

B3(Green), 
B4(Red), 
B8(NIR) 

0.8764 
B3(Green), 
B4(Red), 
B8(NIR) 

0.8124 
B2(Blue), 
B4(Red), 
B11(SWIR1) 

0.9639 B2(Blue),  
B3(Green) 0.9128 

𝑪𝒉𝒍 − 𝒂 (
𝝁𝒈

𝑳
) 

B2(Blue), 
B3(Green), 
B4(Red), 
B11(SWIR1), 
B12(SWIR2) 

0.9440 
B3(Green), 
B4(Red), 
B8(NIR) 

0.8404 
B3(Green), 
B4(Red), 
B8(NIR) 

0.7978 
B3(Green), 
B4(Red), 
B8(NIR) 

0.7161 

𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚 

(𝑵𝑻𝑼) 

B1, 
B3(Green), 
B8(NIR) 

0.9788 B3(Green),  
B8(NIR) 0.9725 

B1, 
B4(Red), 
B8(NIR), 
B11(SWIR1), 
B12(SWIR2) 

0.7378 
B2(Blue),  
B3(Green),  
B8(NIR) 

0.7370 

 
4.2. Test the Model 
 
In the previous part, the BLR model was created for each date. In this part, two tests are made for the model. 
At the first step, the model created for each date is tested using 20 percent of the input data (test data) to evaluate 
the model's validity for the date. At the next step, the model that is created for 11 September 2020 is used to 
predict the values of the parameters on 28 June 2021. The main purpose of the step is to compare between 
seven bands input and four bands input and validate the model to predict water quality parameters' values at 
other dates. RMSE of models for each step is calculated and mentioned in Table 3. 
 
Table 3: The RMSE of models (1) using test data of the model, and (2) predicting the values of the five parameters 

on 28 June 2021 using the model made for 11 September 2020. 

  11 September 2020 Sampling 28 June 2021 Sampling 

parameter 
7 Bands 4 Bands 7 Bands 4 Bands 

RMSE (1) RMSE (1) RMSE (1) RMSE (2) RMSE (1) RMSE (2) 

𝑻𝑫𝑺 (
𝒈

𝑳
) 0.0081 0.0014 0.0363 0.1138 0.0360 0.1132 

𝑺𝒂𝒍𝒊𝒏𝒊𝒕𝒚 (
𝒈

𝑳
) 0.0182 0.0136 0.0508 0.2601 0.0496 0.2094 

𝑬𝑪 (
𝒎𝒔

𝒄𝒎
) 0.1491 0.0107 0.0977 0.2516 0.0972 0.1429 

𝑪𝒉𝒍 − 𝒂 (
𝝁𝒈

𝑳
) 0.8070 0.2117 0.2867 0.9278 0.2485 0.9055 

𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚 

(𝑵𝑻𝑼) 
0.1394 0.0492 0.3840 0.4589 0.3790 0.3945 

 
Considering Table 3, it could be concluded that the BLR model is one of the reliable models with lower 
computational costs that can be used for water quality parameters' prediction in the Gorgan Gulf using Sentinel-
2. The RMSE of the model in each date (RMSE (1)) in both dates for all of the parameters is lower than 0.5. 
On the other hand, the comparison between the RMSE (1) at 28 June 2021 and the RMSE of the predicted 
water quality parameters at 28 June 2021 by the model created for the 11 September 2020 (RMSE (2)) 
illustrates that although the RMSE increases, the model still is a valuable predictor because the RMSE (2) is 
lower than 1 for all of the parameters. The comparison between RMSE (2) for the model with seven bands and 
RMSE (2) for the model with four bands indicates that using four bands not only reduces computational costs 
because of the fewer inputs but also decreases RMSE (2). This means that the model with four bands could be 
a better predictor than the model with seven bands. 
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4.3. Exported Maps of the BLR Model 
 
Exported maps based on the BLR model of each date are presented in Figure 5. these maps are exported using 
four bands input employing GEE. 
 

 
Figure 5: Exported Gorgan Gulf water quality parameters maps using BLR model with four bands input. These 

maps are exported for 11 September 2020 for (A) TDS, (C) Salinity, (E) EC, (G) Chl-a, (I) Turbidity, and 28 June 

2021 for (B) TDS, (D) Salinity, (F) EC, (H) Chl-a, and (I) Turbidity. 

5. CONCLUSIONS 
 

This study shows the importance of band selection for water quality parameters. To this end, five water quality 
parameters (TDS, Salinity, EC, Chl-a, and Turbidity) in Gorgan Gulf were predicted using field measured data 
on 11 September 2020 and 28 June 2021 and data Sentinel-2 satellite data. A BLR model with two series of 
bands (seven bands: Aerosols, Blue, Green, Red, NIR, SWIR1, SWIR2, and four bands: Blue, Green, Red, 
NIR) was used to predict the water quality parameters. 
Results indicate that using four bands is more rational because it covers the wavelength range of water spectral 
signature, reduces computational costs, and gives better RMSE than seven bands. Also, results show that the 
BLR model could be a reasonable model for Gorgan Gulf water quality parameters' prediction using Sentinel-
2 satellite because the model prediction RMSE is lower than 1 for all the parameters. 
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