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A B S T R A C T   

Bathymetric mapping for an accurate estimation of stored water volume in drying lakes is a key information for 
an effective monitoring of their recession or restoration status. Extraction of bathymetry in shallow saline lakes 
using remote sensing techniques has always been challenging due to the complex influences imposed by the 
physical properties of substrate and the spatial variability of salinity. In this study, we developed a machine 
learning-based model to quantify the implicit, non-linear relationship between water depth and surface reflec
tance by leveraging extensive in-situ data and high-resolution satellite imagery. We trained and tested the 
learning model in the hyper-saline Lake Urmia (LU), which faced catastrophic drying over the past two decades. 
To this end, we used Landsat-8 imagery and 32,984 hydrography data points surveyed by the Urmia Lake 
Restoration Program (ULRP) from 2017 to 2020 during six stages. To enhance the model accuracy, we tuned the 
model inputs by optimizing the spectral information and clustering in-situ data from stages with similar mete
orological conditions into three classes. The results demonstrated the high accuracy of the developed intelligent 
model as evidenced by R2 = 0.8 ~ 0.9 and RMSE = 7.8 ~ 17.9 cm for the three models. We found that the 
average water depth in the LU was increased from 0.43 m in September 2018 to 2.00 m in May 2020. In 
particular, the lake water volume in May 2020 was 3.6 times greater than that in February 2019, which marks a 
remarkable shift in the LU restoration. Dynamic bathymetric maps also witnessed considerable salt dissolution 
taking place across the lake during this period. Finally, we extracted the LU level-area relationship by processing 
172 Landsat images between 1984 and 2020, which was validated against the field data surveyed along the lake 
water boundary in 2019. The results indicated that the level-area relationship follows a dual linear relationship 
separated at the water level of 1271.31 m.   

1. Introduction 

Many saline lakes worldwide have faced drastic desiccation over the 
past decades, e.g., Walker Lake in Nevada, USA (Benson et al., 1991), 
Aral Sea in Central Asia (Micklin, 2007; Micklin, 1988), Great Salt Lake 
in Utah, USA (Bedford, 2009), and Lake Urmia in Iran (AghaKouchak 
et al., 2015), among others. Anthropogenic activities such as extensive 
agriculture development than climate variability have witnessed a much 
greater contribution to the drying of these lakes (Wurtsbaugh et al., 
2017). Having caused serious adverse impacts on water quality (Bayati 
and Danesh-Yazdi, 2021), human health (Sadeghi-Bazargani et al., 
2019), and biota diversity (Stenger-Kovács et al., 2014), implementation 
of restoration activities is indispensable to guarantee the long-term 

sustainability of these environments. Continuous monitoring of water 
storage in a reviving lake is the most reliable tool to assess the success of 
the employed restoration plans. 

Estimating water balance components, i.e., direct precipitation on 
the lake, evaporation rate, and inflows from and outflows to surface and 
groundwater, can yield the change in water storage. However, this is 
often challenging due to the complexity and uncertainty involved in 
estimating these variables by empirical relationships or numerical 
models using ground measurements and/or space-borne data (Grone
wold et al., 2020; Winter, 1981). Alternatively, we can directly estimate 
the stored water volume of an aquatic system from its geometry given 
the underlying bed topography called bathymetry. The bathymetry of 
saline lakes can be highly dynamic in both space and time due to the 
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fluctuating rates of salt precipitation and dissolution. As such, recursive 
bathymetric delineation of these environments is necessary for an 
appropriate estimation of their stored water volume over time. 

We can derive bathymetric maps traditionally by shipboard acoustic 
echo-sounding using single or multi-beam sonar. Despite its high accu
racy, this technique is costly, time-consuming, and labor-intensive, 
especially for surveying shallow waters due to the decreased swath 
width (Dierssen and Theberge, 2014). Instead, active and passive remote 
sensing (RS) contextualized into imaging and non-imaging methods 
have been widely used to extract bathymetric maps (e.g., Bian et al., 
2018; Cahalane et al., 2019; Gao, 2009; Stewart et al., 2016). In contrast 
to traditional approaches, RS has facilitated a fast, low-cost, and 
extended spatial coverage over areas that may not be accessible for 
ground measurements. The most common sensing techniques for ba
thymetry derivation are based on optical RS (i.e., multispectral or 
hyperspectral imagery) (e.g., Klonowski, 2007; Ma et al., 2020; Pacheco 
et al., 2015), Light Detection and Ranging (LiDAR) (e.g., Li et al., 2019; 
Xu et al., 2020), satellite altimetry (e.g., Smith et al., 2005; Smith and 
Sandwell, 1994), and Synthetic Aperture Radar (SAR) (e.g, Bian et al., 
2018; Stewart et al., 2016). Subsequently, a number of methods have 
been developed for deriving bathymetry information using RS data 
captured by the above techniques. In particular, the models based on 
optical RS, e.g., the Lyzenga model (Lyzenga, 1978; Lyzenga, 1985; 
Lyzenga et al., 2006), the Jupp model (Jupp, 1988), and the Stumpf 
model (Stumpf et al., 2003), hold the most frequent applications over a 
variety of water bodies. 

Former extensive studies have shown that the accuracy of water 
depth (H) estimation from these algorithms depends strongly on the 
heterogeneity in water turbidity, reflective properties of substrate, and 
water depth variation (see Jawak et al. (2015) and referenced therein for 
a comprehensive review of the accuracy, advantages, drawbacks, and 
the domain of applicability of these models). Here, we further argue that 
in addition to the underlying assumptions of the above models, their 
simple linear or ratio transform structure cannot adequately explain the 
integrated influence of the physical properties of water and substrate 
across an image extent. In addition, these algorithms typically use a 
fraction of spectral information available from airborne data. To tackle 
these limitations, we can leverage fine-tuned machine learning algo
rithms to develop non-linear relationships between multi-spectral data 
and in-situ measurements of water depth under a wide range of condi
tions. These algorithms include, but are not limited to, Artificial Neural 
Networks (ANN) (Ceyhun and Yalçın, 2010; Gholamalifard et al., 2013; 
Liu et al., 2018; Moses et al., 2013; Sandidge and Holyer, 1998), 
Random Forest (Manessa et al., 2016; Sagawa et al., 2019; Yunus et al., 
2019), Support Vector Machine (Misra et al., 2018; Wang et al., 2019), 
and Ensemble Regression Trees using Bootstrap Aggregation and Least 
Squares Boosting (Mohamed et al., 2017). The findings of these studies 
unanimously demonstrate that machine learning-based algorithms show 
an improved performance in deriving bathymetric maps as compared to 
those obtained by other traditional approaches. 

In this study, we developed a learning-based model to decipher the 
dynamics of bathymetry in the reviving, hyper-saline shallow Lake 
Urmia (LU) located in northwestern, Iran. To the best of our knowledge, 
this is the first study that leveraged the most recent extensive in-situ 
hydrography measurements to derive bathymetric maps between 2017 
and 2020. Regarding the outdated bathymetry being currently used to 
monitor the lake water volume, the new findings yield a more reliable 
insight into evaluating the restoration status of LU over the recent years. 
We further present the most updated level-area relationship in the LU by 
extracting the lake surface area with the aid of high-resolution satellite 
imagery between 1984 and 2020. We validated the employed classifi
cation algorithm against the lake boundary data surveyed at multiple 
traces in 2019. In contrast to previous studies, the developed level-area- 
volume relationship describes the most dry and wet conditions of the 
lake during the last 50 years. 

The rest of this article is organized as follows. Section 2 presents the 

study area and describes the in-situ measurements and RS data used for 
the purpose of this study. In this section, we also outline the method
ology to map bathymetry. Section 3 presents the results, and Section 4 
discusses the findings by focusing on (i) the revisited level-area-volume 
relationship in the LU, (ii) the influence of bathymetry and RS data 
quality on the accuracy of the water depth prediction model, and (iii) the 
dynamics of salt precipitation and dissolution in the LU. Finally, Section 
5 concludes with the study findings. 

2. Methods and data 

2.1. Study area 

LU is located in the northwest of Iran (37◦ 04′ N to 38◦ 16′ N, 45◦ 02′

E to 46◦ 00′ E), which receives freshwater from several rivers draining 
twelve sub-basins in the ~52,000 km2 Lake Urmia Basin (Fig. 1a). 
Registered as a Protected Area (1967), a National Park (1971), a Ramsar 
Site (1975) and a UNESCO Biosphere Reserve (1976), LU is recognized 
as one of the wetlands of international importance. It is also well-known 
for its hyper-salinity where the salt concentration has recorded fluctu
ations between 140 g/l and 380 g/l (Zeinoddini et al., 2009). Recent 
field investigations of the lake sedimentology reveal salt deposits on the 
lake bottom (Fig. 1e) ranging a few centimeters in the south up to three 
meters in the north (Lahijani et al., 2020). LU is partly separated by the 
15 km Kalantari Causeway and Bridge (Fig. 1b), which has intervened 
the water circulation and mixing between the northern and southern 
parts. The intra-annual variation of salinity across the LU demonstrates 
two patterns of salinity distribution. While the distribution of salinity 
concentration in the southern and northern parts becomes distinct in 
high-flow months, a relatively uniform distribution is observed during 
dry months across the whole LU (Bayati and Danesh-Yazdi, 2021). 

Historical record of the LU water level (H) indicates that the lake lost 
about eight meters of water between 1996 and 2016 (Fig. 1f), which was 
equivalent to a loss of ~33 BCM of water. Several former studies have 
pointed out the major reasons for the drastic decline of LU. They include 
intensive agricultural development, the imbalance between water sup
ply and demand, decreased environmental flow by the improper oper
ation of reservoirs, illegal withdrawal from surface and groundwater 
resources, and low irrigation efficiency in the Lake Urmia Basin. This 
mostly human-made shrinkage led to a wide range of environmental and 
socioeconomic problems such as desertification, increased soil salinity 
in the agricultural areas near the lake, disturbance in the ecological 
condition of the lake biota (e.g., Artemia), and increased unemployment 
rate due to recession in agricultural activities (see Danesh-Yazdi and 
Ataie-Ashtiani (2019) and references therein). 

To cease the drying trend of LU, Urmia Lake Restoration National 
Committee has planned and implemented several basin management 
practices to increase inflow into the LU since 2013. Reducing agriculture 
water allocation, stream dredging to increase the delivering capacity of 
the rivers feeding the lake (Fig. 1c), and artificial channelization in the 
southern sub-basins of the lake, which provide more than 50% of the 
lake annual inflow (Fig. 1d), are among such actions (Urmia Lake 
Restoration Program (ULRP), 2018). As a result, the streamflow rate into 
the lake is supposed to increase and cause enhanced sediment yield 
accordingly, which is spatially variable depending on the sediment 
rating curve of each river flowing into the lake. Moreover, the increased 
volume of freshwater flow leads to salt dissolution in high-flow seasons 
especially near the inlet zones, while salt precipitation dominates in the 
dry seasons with spatiotemporally different rates. The interplay between 
sedimentation, salt precipitation, and salt dissolution processes makes 
the lakebed topography dynamic, which clearly changes the lake level- 
volume relationship over time. 

2.2. Hydrography data 

We used hydrography data collected from six surveys that were 
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carried out by multiple sources between September 2017 and May 2020. 
Table 1 gives the date, location and source of the surveyed data. The 
Iranian Institute of Space Research Mechanics (ISRC) carried out the first 
to fifth surveys during September 23–October 22, 2017; March 6–April 
20, 2018; July 7–September 9, 2018; September 23–December 21, 2018; 
and February 24–March 16, 2019, respectively, in which water depth at 
4894, 6273, 684, 1629, and 8485 points were surveyed using a combi
nation of echo-sounder and RTK GPS. The first, second, and fourth 
surveys were conducted along 12 paths of 10 km (separated by 500 m) 
centered on the Kalantari Causeway. In the third and fifth surveys, data 
were collected along 12 and 24 paths with different lengths across the 
whole lake, respectively. The sixth survey was operated by the Darya 
Naghsheh Consulting Engineers during May 17–May 27, 2020, by which 
11,019 points were surveyed by an echo-sounder across the whole lake. 
We received the raw hydrography data mentioned above from the Urmia 
Lake Restoration Program (ULRP). 

To compute the lakebed elevation from the measured H data, we 

used daily H data recorded by a hydrostatic recording gauge at the 
Golmankhaneh station. This station was originally located on the Mid
western shore of the LU (37◦ 36′ 03′′ N, 45◦ 15′ 31′′ E) (GS1 in Fig. 1a). 
However, due to the lake level fall, the station was relocated to the lake 
center near the Kalantari Bridge (37◦ 47′ 26′′ N, 45◦ 22′ 07′′ E) in August 
2008 (GS2 in Fig. 1a). 

2.3. Satellite data 

We used Landsat 4–5 TM Collection 2 Level-2 and Landsat-8 OLI/ 
TIRS Collection 2 Level-2 products to delineate the LU surface area from 
1984 to 2020. We derived the bathymetric maps from 2017 to 2020 
using Landsat-8 imagery. Level-2 products give surface reflectance 
values that already corrects the effects of atmospheric scattering and 
absorption (Landsat collection 2, 2021). For each period during which 
hydrography data were collected, we downloaded a satellite image from 
USGS Earth Explorer. If a cloud-free image was not available in a survey 

Fig. 1. Human-induced changes in Lake Urmia (LU) region. Panel (a) illustrates the Landsat imagery of the LU. The main feeding rivers, the geographical location of 
the lake level gauging station (GS1 and GS2), and the location of middle causeway are shown. Panel (b) indicates the extent of the causeway and its opening length. 
Panel (c) shows an example of river dredging operations in the Lake Urmia Basin to enhance the carrying capacity of streams. Panel (d) shows the artificial 
channelization in the southwestern LU to facilitate increased inflow to the lake. Panel (e) indicates the salty lakebed. The time series of lake level fluctuations 
between 1965 and 2020 is shown in panel (f). 
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period, we used the closest image to that period window. As such, sat
ellite images recorded on September 14, 2017, April 26, 2018, 
September 17, 2018, December 22, 2018, February 24, 2019, and May 
17, 2020 were used for the first to sixth periods, respectively. We used 
the Ultra Blue (0.43–0.45 µm), Blue (0.45–0.51 µm), Green (0.53–0.59 
µm), and Red (0.64–0.67 µm) bands of Landsat-8 for the analysis 
explained in Section 2.6. 

2.4. Extraction of lake water body 

To derive the bathymetric maps at multiple times as well as to update 
the lake level-area-volume relationship, we first needed to determine the 
water boundary of the lake at the time of satellite image being used. To 
this end, we used the k-means clustering, which is an unsupervised 
learning algorithm for a quick classification of an image into a desired 
number of feature classes (Likas et al., 2003). 

The k-means clustering groups a dataset Ω, comprised of N vectors of 
vi, 1 ≤ i ≤ N, into a k number of clusters defined by the user. Each vector, 
vi, represents a pixel, and each element of vi, vi,ω, 1 ≤ ω ≤ M, carries a 
characteristic of the pixel. To cluster Ω, this method first chooses k 
arbitrary vectors, clc, 1 ≤ c ≤ k, as the centroids of the k clusters. Similar 
to vi, each clc consists of M characteristics denoted as clc,ω, 1 ≤ ω ≤ M. 
Each pixel in Ω is then assigned to one of the k clusters based on the 
minimum Euclidean distance between the pixel’s characteristics and the 
cluster centroids. The Euclidean distance (ED) between the vector vi and 
the cluster centroid clc is computed as (Alfakih, 2018): 

ED
(
vi,clc

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
vi,1 − clc,1

)
2 +

(
vi,2 − clc,2

)
2 + ⋯ +

(
vi,M − clc,M

)
2

√

(1) 

When the first clustering of all pixels is complete, the centroid of each 
cluster is updated and the iterative relocation is repeated until the 
centroid of each cluster is insignificantly different from its previous 
value. 

Data from multiple bands or their combination such as Normalized 
Difference Water Index (NDWI), Modified Normalized Difference Water 
Index (MNDWI), Normalized Difference Vegetation Index (NDVI), 
Automated Water Extraction Index (AWEI), and Albedo (α) can be used 
as the training input to the classification algorithm. While former studies 
have demonstrated the high sensitivity of water body detection to the 
above indices (Feyisa et al., 2014; McFeeters, 1996; Xu, 2006), the ac
curacy is case-specific due to the impact of water constituents and 
substrate characteristics on the reflected energy from the water surface 
(Sun et al., 2017). As such, we tested different combinations of the above 

indices with different numbers of k-means clusters to extract the water 
body that best describes the true water body boundaries using the sur
veyed lake boundary data. 

Due to the presence of some natural or artificial features in the LU 
buffer zone such as artificial channels, the extracted water body iden
tifies these features as water pixels, too. To exclude these features from 
the lake water body, we implemented a square-shaped sliding median 
filter of window size 11 × 11 on a given classified image. By moving the 
filter across the image, each pixel’s value was replaced by the median 
value of its adjacent pixels. This process would assign a zero value to 
those water pixels that are dominantly surrounded by non-water pixels, 
thus confining the lake’s true water body. Given the extracted water 
bodies from 1984 to 2020, the time series of LU surface area was 
computed based on the image pixel size, which was 30 m for the Landsat 
images used in this study. 

2.5. Survey data on the lake boundary 

To validate the approach adopted in Section 2.4 for delineating the 
LU water boundary, we conducted three field surveys on July 15 and 
July 17, 2019, in which the geographic location of 765 points along the 
lake water boundary was surveyed by the GARMIN eTrex Vista HCx 
handheld GPS device. The device positioning error is smaller than 10 m. 
The maximum error of this device is one-third of the Landsat’s spatial 
resolution (i.e., 30 m); hence, the device accuracy was enough for 
tracing the LU water boundary. We chose the above survey timeframe 
(1) to minimize the lag-time between data collection and the pass of 
Landsat-8 satellite over the LU on July 18, 2019, and (2) to ensure a 
cloud-free condition based on the weather forecast. Fig. 2a–c depict the 
three surveyed paths mapped on a true-color image from Landsat-8 on 
July 18, 2019. We surveyed the 1.67 km path 1 (in red) and 1.41 km 
path 2 (in green) on the eastern shore of the LU from mid to north and 
south, respectively. Path 3 (in yellow) was surveyed by 1.63 km on the 
western shoreline towards the south. 

2.6. Lake bathymetry derivation 

In this section, we present the framework used for the derivation of 
bathymetric maps in the LU. The proposed methodology is not restricted 
to LU and can be employed in other environments of interest. In Section 
2.6.1, we outline the procedure for pre-processing of the surveyed ba
thymetry data. In Section 2.6.2, we briefly describe the developed ANN 
model, which builds the relationship between water depth and water 
surface reflectance. Given a number of reflectance data at different 
bands from satellite imagery, the proposed approach for finding the 
optimum input band combination is described in Section 2.6.3. Finally, 
in Section 2.6.4 we further explain how different sets of hydrography 
data were clustered as the training data of the machine learning model 
to improve estimation accuracy. 

2.6.1. Pre-processing of hydrography data 
We performed a thorough pre-processing on the surveyed hydrog

raphy data to identify inappropriate data and exclude them from the 
training and testing dataset used in the machine learning model. We 
mainly considered two types of data as inappropriate data. First, given 
the water body extent from Section 2.4, there is a possibility that some 
surveyed points near the lake shoreline fall beyond the extracted water 
boundary. This can be due to (1) the error in the classification results at 
very shallow water depths, (2) the time gap between hydrography sur
vey and satellite image acquisition, and (3) the error in recording the 
field data. In either cases, these points were identified and excluded 
from the rest of the analysis. Second, we examined the existence of any 
outliers in the remaining data. To this end, we used the concept of 
Mahalanobis distance and computed it for each observation in a given 
survey as: 

Table 1 
The date, location and source of hydrography data.  

Survey Survey Location Survey Period Survey Source 

1 4894 points along 12 paths 
of 10 km (separated by 
500 m) centered on the 
Kalantari Causeway. 

September 
23–October 22, 
2017 

Iranian Institute of 
Space Research 
Mechanics (ISRC) 

2 6273 points along 12 paths 
of 10 km (separated by 
500 m) centered on the 
Kalantari Causeway. 

March 6–April 20, 
2018 

3 684 points along 12 paths 
with different lengths 
across the whole lake. 

July 7–September 
9, 2018 

4 1629 points along 12 paths 
of 10 km (separated by 
500 m) centered on the 
Kalantari Causeway. 

September 
23–December 21, 
2018 

5 8485 points along 24 paths 
with different lengths 
across the whole lake. 

February 
24–March 16, 
2019 

6 11,019 points across the 
whole lake. 

May 17–May 27, 
2020 

Darya Naghsheh 
Consulting 
Engineers  
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MD =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(y − μ)T S− 1(y − μ)

√
(2)  

where MD denotes the Mahalanobis distance between the multivariate 
observation, y, and its mean, μ, and S represents the covariance matrix of 
y. For each data point, y includes the measured water depth as well as 

reflectance values from the selected satellite bands. Since MD2 has a Chi- 
Square distribution, we considered those data with p-value < 0.001 in 
the Chi-Square test as outlier and excluded them from the dataset. 
Several former studies have suggested this approach as a robust and 
reliable method for the detection of outliers in multivariate parameters 

Fig. 2. Three surveyed paths along the Lake Urmia boundary on July 15 and July 17, 2019. The basemap shows the Landsat-8 RGB image on July 18, 2019. The lake 
water body extracted by the k-means algorithm is also shown in cyan. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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(e.g., Li and Jain, 2009). 

2.6.2. Artificial neural network (ANN) model: architecture, training and 
testing 

ANN is a supervised machine learning model that distributes data on 
inter-neuronal links to find the relationship between the model input 
and output (da Silva et al., 2017). A neural network architecture is 
composed of an input layer, hidden layer(s), and an output layer. Fig. 3 
shows the structure of the ANN model developed in this study, which 
includes two hidden layers. Each layer of the neural network is made up 
of units called neurons. The neurons in the input layer, first hidden layer, 
second hidden layer, and the output layer are denoted by p (1 ≤ p ≤ P), m 
(1 ≤ m ≤ M), n (1 ≤ n ≤ N), and q (1 ≤ q ≤ Q), respectively, where P, M, 
N, and Q are the total number of neurons in the input layer, first hidden 
layer, second hidden layer, and the output layer, respectively. P equals 
to the number of input variables, which is the number of spectral bands 
in this study, and q = 1 for the network shown in Fig. 3. 

The input variables to the neural network (i.e., reflectance values 
from different bands) are multiplied by certain relating weights and are 
then treated as the inputs of the neurons in the first hidden layer. This 
process can be expressed as 

Ih1
m =

∑

p
Wh1

p→mBl(X)p + bm (3)  

where Ih1
m is the input variable to neuron m in the first hidden layer h1, 

Wh1
p→m is the weight of the link that connects neuron p in the input layer 

to neuron m in the first hidden layer h1, Bl(X)p is the reflectance value 
from band l (1 ≤ l ≤ L) at locations X{xg, 1 ≤ g ≤ G} that enters neuron p, 
L equals to the total number of bands, xg is the location of pixel g in a 
given satellite image, G is the total number of pixels in the image, and bm 
is a constant value belonging to neuron m. Each neuron m in the first 
hidden layer applies a non-linear activation function to the input ac
cording to the following equation: 

Oh1
m =

1
1 + exp(− Ih1

m )
(4)  

where Oh1
m is the output value of neuron m in the first hidden layer h1. 

The above function, known as the Sigmoid function, is one of the most 
widely used activation functions in the context of multilayer perceptron 

neural network (e.g., Choudhary et al., 2010). Although the activation 
function is a key parameter in a neural network functioning, if the 
developed ANN model is trained successfully with appropriate sufficient 
inputs, different activation functions are not expected to impose sig
nificant influence on the accuracy of the outcome (Feng and Lu, 2019). 

Similar to the first hidden layer, the input to the second hidden layer, 
h2, can be written as 

Ih2
n =

∑

m
Wh2

m→nOh1
m + bn (5)  

where Ih2
n is the input variable to neuron n in the second hidden layer h2, 

Wh2
m→n is the weight of the link that connects neuron m in the first hidden 

layer to neuron n in the second hidden layer h2, and bn is a constant 
value belonging to neuron n. Each neuron n in the second hidden layer 
applies the same activation function to its input, which ultimately gives 

Oh2
n =

1
1 + exp(− Ih2

n )
(6)  

where O2
n is the output of neuron n in the second hidden layer h2. Finally, 

the input of the output layer, which is indeed the output of the neural 
network, can be written as 

D(X)
pred

=
∑

n
Wh2

n→qOh2
n + ε (7)  

where D(X)pred is the predicted water depth at locations X, Wh2
n→q is the 

weight of the link that connects neuron n in the second hidden layer to 
neuron q (=1) in the output layer, and ε is a constant value relating to 
the output layer’s neuron. 

From the above formulation, we observe that the developed ANN 
model contains six parameters, i.e., Wh1

p→m, Wh2
m→n, Wh2

n→q, bm, bn, and ε. 
These parameters were calibrated such that the following objective 
function is minimized: 

min
∑G

g=1

(
D(xg)

pred
− D(xg)

obs
)

2 (8)  

where D(xg)
obs is the measured water depth at location xg. We used the 

back-propagation algorithm to train the ANN model. This technique is a 
common approach for training an ANN structure. The main advantage of 

Fig. 3. The architecture of the developed ANN model to map water depth.  
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this scheme is the low computational cost for the training process and its 
reliable accuracy in most of the applications (Chauvin and Rumelhart, 
1995). To determine the optimum structure of the ANN, we adopted the 
forward selection approach through a serious of Monte Carlo simula
tions (Han et al., 2011). To this end, we first considered one hidden layer 
and found the best number of neurons in the first layer by testing a 
relatively wide range of neurons. After setting the number of optimum 
neurons in the first layer, we added a new hidden layer and found the 
optimum number of neurons for the new layer by testing different 
number of neurons. The above process was repeated until adding a new 
layer with any number of neurons did not increase the prediction ac
curacy significantly. 

In addition, we employed the k-fold cross-validation method with ten 
folds for the model training and testing purposes (Han et al., 2011). This 
method yields a more realistic model accuracy by using different parts of 
the training data, as compared to those approaches that select a random 
portion of data for training and the rest for model testing. To implement 
the k-fold cross-validation method, we first divided the training data 
into 10 seeds, where data from the nine seeds were used to train the 
model and data in the tenth seed were used to test the model. The 
training and testing processes were then repeated 10 times such that in 
each iteration, a unique combination of the nine seeds for training and 
one seed for testing were utilized. This guarantees the consideration of 
all non-repetitive combinations for model training and testing. After 
completing each process, the model accuracy for training and testing 
was recorded, separately. Finally, the average accuracy of 10 training 
and 10 testing processes was considered as the final accuracy of the 
model in the training and testing, respectively. 

Here, we note that the uncertainty of prediction may be remarkable 
in the very shallow water depths near the lake water boundary or near 
the isolated land features within the lake body. To avoid the issue of 
masking the results, we filtered the model outputs based on the 
following criteria. Given the hydrography points surveyed in each 
period, we extracted the albedo of every point from Landsat-8 and 
plotted albedo against water depth. The relationship between these two 
quantities has a declining trend with more scattering in smaller water 
depths. For each period, we determined the water depth below which 
albedo showed a very narrow variation. Given these thresholds of water 
depth and albedo, we filtered those model outputs with water depth and 
albedo larger than their relating thresholds. This filtering ensures 
eliminating the wrong estimation of large water depths in very shallow 
areas. 

2.6.3. Finding the optimum input band combination 
The optimum input band combination is defined as the combination 

that gives the largest accuracy in estimating water depth using the 
developed ANN model. Various compositions of mainly ultra-blue (UB), 
blue, green, and red bands have been used in similar previous studies to 
extract bathymetric maps using optical sensors (e.g., Kabiri, 2017; 
Karimi and Bagheri, 2016; Knudby et al., 2016; Pacheco et al., 2015; 
Yunus et al., 2019). However, we performed a comprehensive analysis 
via a series of Monte Carlo simulations to take into account all possible 
band compositions as the input of the ANN model. To this end, we 
considered different combinations of the first seven bands of Landsat-8 
as the alternative inputs to the model, which included 127 different 
inputs. For each set, the error of the ANN model in the testing process 
was calculated, and finally the band composition resulted in the least 
error was used as optimum input to derive the bathymetric maps. 

2.6.4. Clustering the training dataset to improve water depth prediction 
To improve water depth prediction, we clustered the hydrography 

data from all six surveys into three groups. The first group includes data 
of the first and third surveys at the end of summer and early autumn; the 
second group includes data of the second and sixth surveys in late winter 
and early spring; and the third group includes data of the fourth and fifth 
surveys in autumn and early winter. The basis of this clustering was the 

similarity of atmospheric conditions as well as the angle of sunlight for 
each group, which diminishes the variation in the reflectance values. 
Table 2 shows the average air temperature (as a surrogate for the angle 
of sunlight), average pressure, and average relative humidity during the 
hydrography surveys. We observe that those periods aggregated into one 
category have a similar condition in terms of the above meteorological 
characteristics. We acknowledge that several other factors besides the 
angle of sunlight also influence the surface temperature. However, since 
the angle of sunlight is one determining factor of the energy reaching the 
earth’s surface, the proximity of air temperature can be considered as 
the proximity of the angle of solar radiation in each data category. 

3. Results 

3.1. The accuracy of extracted water bodies 

Having tested different numbers of clusters in the k-means algorithm, 
we found that three clusters yielded the most accurate results in delin
eating the lake water body. We also observed that the combined use of 
MNDWI and Albedo could successfully delineate the lake water 
boundary as contrasted against the three surveyed paths (see Fig. 2). The 
Euclidean distance between the extracted lake water boundary and the 
surveyed paths is 26 m, 17 m, and 4 m for paths 1 to 3, respectively, 
which is smaller than the image pixel size. Visual inspection of the 
extracted water body on July 18, 2019, against the relating RGB satellite 
image further confirms that the k-means algorithm could precisely 
extract the lake water body. 

We note that the Euclidean distance from the k-mean clustering for 
path 3 is smaller than that for path 1 and path 2. We attribute such 
different accuracies to a few possible causes. First, the location of the 
lake water boundary is different between the time of field data collection 
and the satellite image acquisition. Indeed, there was a three-day gap 
between the time of surveyed water boundary along paths 1 and 2 (i.e., 
July 15, 2019) and the satellite passage (i.e., July 18, 2019), while it was 
only 1-day gap for path 3 which was surveyed on July 17, 2019. 
Regarding the lake fluctuation in H from 1271.69 m on July 15, 2019, to 
1271.67 m on July 18, 2019, we expect a smaller difference between the 
observed and extracted water boundaries along path 3 as compared to 
the other two paths. We also noticed a windy condition on July 15, 2019, 
which further contributed to larger fluctuations along the lake shoreline 
on this day. Second, high soil moisture (near saturation) condition left 
by diurnal lake water recession can be another source of error. Third, the 
lakebed topography has a milder slope in the eastern than the western 
side of the lake. Therefore, a small rising or falling of the lake level can 
project into a larger progression or recession in the shore zone. 

Here, we note that using NDWI thresholding, as a reduced 
complexity approach, is also very common for distinguishing water from 
non-water pixels. Nevertheless, since the LU water depth is very shallow 
near the boundaries and the salt deposits nearby the shoreline are almost 
saturated, it is expected that accurate delineation of the lake boundary 
from this approach would be challenging and might lead to unrealistic 
results. To examine this issue, we used the average NDWI of all pixels 
along the three surveyed paths as the threshold to extract the water body 
extent. We found that the extracted lake water body was significantly 

Table 2 
Average air temperature, average air pressure, and average relative humidity 
during the hydrography surveys.  

Survey Average Air 
Temperature (◦C) 

Average Air 
Pressure (HP) 

Average Relative 
Humidity % 

1  27.7  870.1  31.0 
2  19.1  869.2  50.2 
3  30.3  861.3  37.0 
4  4.2  870.5  83.5 
5  5.9  871.1  82.6 
6  18.4  866.3  46.4  
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larger than reality, especially in the southwestern part of the lake. We 
further performed the same analysis at other multiple instances with 
different lake surface extent, which yielded the same conclusion. 
Therefore, using the same NDWI threshold for the extraction of water 
body at different times does not yield appropriate results, particularly in 
shallow environments. This highlights the necessity to tune the appro
priate value of the NDWI threshold for each given image, which would 
be very time-consuming given the number of images to be processed in a 
long-term study period. 

3.2. A threshold behavior in the lake Urmia level-area relationship 

Fig. 4a shows the developed relationship between the LU surface 
area (A) and H, obtained from processing 172 satellite images (i.e., 75 
images from Landsat 4–5 and 97 images from Landsat-8). We observe 
that two linear relationships with different slopes hold between A and H, 
which are expressed as 

A = 2306.5H − 2930000, H < 1271.31 m (9)  

A = 351.65H − 443346, H > 1271.31 m (10)  

where A is in km2 and H is in m above the mean sea level. Both re
lationships are statistically significant with the coefficient of determi
nation (R2) equal to 0.99. The two fitted lines intersect at H = 1271.31 
m. The mean absolute error (MAE) of the first and second relationship is 

55.46 and 48.82 km2, respectively, which is equivalent to 3.21% and 
1.07% of the average A below and above H = 1271.31 m, respectively. 
The root mean square error (RMSE) of A estimates from equations (9) 
and (10) is 73.64 and 69.45 km2, which is equivalent to 3.57% and 
1.45% of the average A below and above H = 1271.31 m, respectively. 

Here, we observe that for H level less than 1271.31 m, A changes in a 
sharper rate with H, while this rate is milder for H larger than this 
threshold. This observation motivates the hypothesis that the east–west 
profiles of the lakebed are comprised of two trapezoids intersecting at 
the elevations close to 1271.31 m. Our preliminary investigations of 
some cross-sectional profiles computed from the hydrography data 
support this hypothesis. However, since the available hydrography data 
do not include complete profiles across the entire lake, we are far from 
making a general conclusion about this observation, and further 
exploration is left for future research. 

Fig. 4b compares the results of the present study with the results 
obtained by the single fourth-order polynomial A-L relationship devel
oped by Karimi and Bagheri (2016) as H = (− 4)− 14A4 +

5− 10A3− 2− 6A2 + 0.0042A + 1267. We observe that the former rela
tionship overestimates and underestimates A at H values smaller and 
larger than 1270.74 m, respectively, as compared to equations (9) and 
(10). As H increases, the difference between the results decreases until 
they become negligible near H = 1278 m. On average, the difference 
between the results of two studies is about 10.7%, which can be 
attributed to (i) the source of satellite images and (ii) the approaches 

Fig. 4. Surface area versus water level relationship in the LU.  
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employed for the extraction of the lake water body. Utilization of 
Landsat imagery with a much finer spatial resolution in the present 
study as compared to AVHRR and MODIS imagery (with 1000 m and 
500 m spatial resolution, respectively) used in Karimi and Bagheri 
(2016) resulted in a much improved delineation of the lake water body. 
In addition, the former relationship was obtained by examining 78 im
ages from 1972 to 2014, while the present study used 172 images from 
1984 to 2020 including data from those years when the lake surface was 
minimum due to the dramatic drying. Finally, unlike the former study, 
our extracted water body in the LU was validated against the field data, 
which adds confidence in the computed surface areas. 

3.3. Spatial distribution of measured water depth 

Having filtered the raw surveyed hydrography data, Table 3 gives the 
average, minimum, and maximum of the remaining measured water 
depth in each survey for the whole lake, northern half, and southern 
half, separately. We observe that after screening the raw data, there is 
still a sufficient set of data, i.e., 32,984 data points from all surveys, 
which could be effectively used to build the predictive model of water 
depth. It is also noteworthy that the average measured water depth in 
the sixth survey is remarkably larger than that in the other five surveys. 
We will investigate this observation in further details in Section 3.6. 

3.4. The ANN model accuracy for estimating water depth 

Table 4 presents the ANN model accuracy for some selected input 
band combinations that yielded the most accurate results by using the 
first group of processed hydrography data (described in Section 2.6.4) as 
the training data. We observe that the combination of UB, blue, green, 
and red bands resulted in the highest accuracy in estimating the water 
depth (MAE = 3.6 cm). The results (not shown here) obtained by using 
the second and third group of hydrography data yielded the same 
conclusion. Table 4 also reveals that if only one band is used as the 
model input, the green band gives the highest accuracy (MAE = 9.1 cm). 
This can be attributed to the LU greenish color in most months, which 
results in a high reflection of electromagnetic waves in this band as 
compared to the other visible bands. In the case of selecting two bands as 
the model input, the blue and green bands (as compared to other two- 
band combinations) give the most accurate results in expressing the 
LU water depth changes (MAE = 7.6 cm). Finally, three-band combi
nation of UB, blue and green gives the least MAE equal to 6.6 cm. 

A couple of points are worth mentioning here. First, increasing the 
number of selected bands does not necessarily lead to enhanced accu
racy of water depth estimation. For instance, selection of all Landsat-8 
satellite bands (non-thermal bands) provided less accuracy than the 
selection of the first four bands. Also, selection of the green band alone 
provided higher accuracy than the selection of the main two-band 
combinations. Second, in many previous studies (e.g., Kabiri, 2017; 
Pacheco et al., 2015; Yunus et al., 2019) the blue band has been pro
posed in combination with other bands to estimate water depth, while 
we found the green band more effective in our study area. This indicates 
that in the RS of aquatic environments, there is no optimal band- 
combination that necessarily applies to all water bodies. The presence 

of different solutes or suspended substances plays an important role in 
differentiating the optimal properties of water from one aquatic system 
to another. 

Using the band-combination of UB, blue, green, and red as the input 
of the ANN model, the final three models were built for the three groups 
of hydrography data, separately. Table 5 gives the accuracy of the 
models in the training and testing processes. We observe that the highest 
accuracy was obtained from the first group of data that were collected at 
the end of summer and the beginning of autumn. The MAE of the testing 
process for the first, second, and third groups of data is 3.3 cm, 9.7 cm, 
and 12.1 cm, respectively. The RMSE in the same process for the first, 
second, and third groups of data is 7.7 cm, 15.6 cm, and 17.9 cm, 
respectively. All statistical measures confirm the high accuracy of the 
developed models. 

The in-situ data clustering approach used in this study witnessed the 
high accuracy of water depth prediction. Alternatively, other ap
proaches could also be employed to use the hydrography data for 
training and testing the prediction model. For instance, we could use the 
data collected in each period to train the ANN model for that period and 
generate the relating bathymetric map. This approach suffers a couple of 
drawbacks. First, at some data collection periods, i.e., the first, second, 
and fourth surveys, the collected data were concentrated around the 
causeway. Regarding the LU’s approximate length of 130 km (in April 
2019) and its large area, it is expected that the variability of lakebed 
topography and chemical properties of the lake water induce consider
able impact on the spectral properties of the lake water from north to 
south. Therefore, the spectral behavior of the lake around the causeway 
cannot be attributed to the whole lake. Indeed, when a neural network 

Table 3 
Statistics of measured water depth in each survey for the whole lake, northern half, and southern half.  

Survey Stage Survey Period Average Measured Water Depth (m) Minimum Measured Water Depth (m) Maximum Measured Water Depth (m) 

Whole Lake North South Whole Lake North South Whole Lake North South 

1 Sep. 23–Oct. 22, 2017  0.97  0.79  1.06  0.00  0.00  0.00  2.36  2.27  2.36 
2 Mar. 6–Apr. 20, 2018  0.87  0.79  0.92  0.00  0.00  0.00  2.51  2.51  2.49 
3 July 7–Sep. 9, 2018  0.47  0.22  0.57  0.00  0.00  0.08  1.45  0.55  1.45 
4 Sep. 23–Dec. 21, 2018  0.56  0.51  0.60  0.00  0.00  0.00  2.61  2.57  2.61 
5 Feb. 24–Mar. 16, 2019  0.88  0.64  1.10  0.00  0.00  0.00  2.41  2.41  2.20 
6 May 17–May 27, 2020  2.26  2.36  2.16  1.17  1.20  1.17  3.36  3.13  3.36  

Table 4 
The ANN model accuracy for some selected input band combinations.  

Number of 
Selected 
Bands 

Selected 
Band(s) 

MAE 
(cm) 

Number 
ofSelected 
Bands 

Selected 
Bands 

MAE 
(cm) 

1 UB  12.5 2 B + G  7.6 
1 B  13.3 2 B + R  17.7 
1 G  9.1 2 G + R  30.5 
1 R  12.8 3 UB + B +

G  
6.6 

2 UB + B  10.3 3 B + G + R  7.7 
2 UB + G  16.5 4 UB + B +

G + R  
3.6 

2 UB + R  9.4 7 All Bands  5.1  

Table 5 
Accuracy assessment of the developed ANN models for the three groups of hy
drography data.  

Data Group Process MAE (cm) RMSE (cm) R2 

1 Training  3.3  7.7  0.9 
Testing  3.6  7.8  0.9 

2 Training  9.4  14.8  0.9 
Testing  9.7  15.6  0.9 

3 Training  11.8  17.7  0.8 
Testing  12.1  17.9  0.8  
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model is trained using any of the data from the first, second, and fourth 
surveys, the output of the model learns the relationship between spectral 
behavior and water depth in only the same period. Consequently, by 
applying each trained model to extract water depth (or bathymetric) 
maps in the whole lake, we cannot expect appropriate estimations in 
other places than near the causeway. The second drawback of this 
approach is that the depth data collected in some survey periods may 

only cover a certain range of depths. For instance, the minimum depth 
measured in the sixth survey was 118 cm; hence, it can be expected that 
a model developed solely using data from the sixth survey cannot esti
mate the shallow depths, especially near the lake shoreline. Considering 
the above issues, it can be concluded that the approach of using data 
from each period to extract the water depth map of the same period is 
not suitable and cannot properly describe the whole lake condition. The 

Fig. 5. Spatial distribution of water depth in Lake Urmia. Panels (a–f) illustrate the estimated water depth from the ANN model on September 14, 2017, April 26, 
2018, September 17, 2018, December 22, 2018, February 24, 2019, and May 17, 2020, respectively. Panel (g) indicates the spatial variation of salinity near the 
bridge (image modified from Fig. 7 in Bayati and Danesh-Yazdi (2021)). Panel (h) shows the extent of local scouring in the vicinity of the bridge. 
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second possible approach was to combine data from all six surveys and 
develop a single model to generate bathymetric maps for each period. 
This approach has also limitations because, at different times of a year, 
spectral patterns change in a water body. Indeed, since the angle and 
intensity of the sun’s illumination change over time, different radiations 
can be received by the satellite sensor for the same water depth. In 
addition, changes in the air humidity and the constituent particles of the 
atmosphere in different seasons of a year further influence the amount of 
reflection received by satellite. Therefore, using the second approach to 
build a single model for the whole year can also impose remarkable 
errors in deriving the bathymetric maps. 

3.5. Dynamics of water depth change in Lake Urmia 

Fig. 5 illustrates the spatial distribution of estimated water depth in 
the LU on September 14, 2017, April 26, 2018, September 17, 2018, 
December 22, 2018, February 24, 2019, and May 17, 2020. Table 6 
further gives the average and the coefficient of variation (CV) of water 
depth in the whole lake, the northern half, and southern half, separately. 
Comparing the lake maps between the third and sixth stages (as the 
driest and wettest stages in the study period, respectively) indicates a 
considerable increase in the lake surface area in 2020 when the two 
islands in the south were surrounded by the lake water. The results 
indicate that the average water depth in the LU was 0.62 m, 0.57 m, 
0.43 m, 0.53 m, 0.86 m, and 2.00 m in the survey stages one to six, 
respectively. H at the relating periods was 1270.32 m, 1270.75 m, 
1270.27 m, 1270.54 m, 1270.82 m, and 1271.91 m, respectively. This 
indicates that in general, the average water depth in the lake increases 
with the increase in H. The exception to this observation is the change of 
water depth in between surveys one and two when the lake level 
increased by 0.43 m while the average lake water depth changed very 
slightly. According to Table 6, the average water depth in the south half 
was increased during this period, while the opposite took place in the 
north half. Together with the decreased CV of water depth in the whole 
lake, it seems that the lakebed topography became uniform during this 
period, which is also evident in Fig. 5b. 

We also observe that the average water depth in the northern half is 
larger than that in the southern half in the survey periods one, two, and 
six, while the reserve holds in the survey periods three and five. In the 
fourth period, there is a negligible difference between the average water 
depths in the two halves, which implies that the variability of water 
depth across the whole lake has a similar pattern. This is confirmed by 
the CV of water depth, which is almost the same in the north and south 
halves and thus the whole lake. We further note that the CV of water 
depth (with respect to the whole lake) changed from 0.80 in the first 
survey period to 0.32 in the sixth survey period. Such a considerable 
decrease in CV is concurrent with the increase of 1.59 m in H, which 
implies that by increasing the volume of inflow to the lake, the spatial 
variability of water depth decreases. Indeed, in the sixth period when 
the lake recorded the highest level since 2010, there is a slight difference 
between the CV of water depth across the lake, i.e., 0.28 for the northern 
half and 0.32 for the southern half. In contrast, in the first period when 
the lake experienced one of its historically lowest levels, the CV of water 
depth is considerably different between the northern and southern 

halves as evidenced by 0.77 against 0.47, respectively. This is mainly 
because of the diminished flow exchange between the two halves in this 
period, which was due to the significant reduction in the lake inflow 
from the southern feeding rivers. 

The impact of increased flow velocity on the lakebed local scouring 
in the vicinity of the Kalantari Bridge is also clear in all water depth 
maps. Fig. 5h indicates a zoomed-in image of the lake water depth at the 
location of the bridge where water exchange between the northern and 
southern halves takes place. It is seen that the extent of the local scoured 
area in the south-north direction is about 3 km, while the width of the 
scour is about 1.3 km and 2.4 km in the northern and southern sides of 
the bridge, respectively. We explored the scour region in all the other 
maps and found similar observations. Given the counter-clockwise di
rection of flow in the LU (Safavi et al., 2020), we observe that the return 
flow from north to south could scour the lakebed in the transverse di
rection to a larger extent than that caused by the south-north flow. 

In Fig. 5g, we further show the spatial variability of salinity con
centration around the bridge in March 2019 (Bayati and Danesh-Yazdi, 
2021) as a cross-reference for the lake dynamics in this region. It is 
obviously seen how the saltier water from the north concentrates the 
lake water in the scoured zone. We note that the spatial scale of the zone 
shown in Fig. 5g is larger than that in Fig. 5h due to the other processes 
that influence salt dispersion. 

Given the water depth maps, we can derive the bathymetric maps by 
subtracting each map from the relating lake water elevation. We refused 
to report the derived bathymetric maps, as their spatial variation is the 
same as that for the water depth maps. However, we discuss how they 
can be used to study the dynamics of salt precipitation and dissolution in 
Section 4.3. 

3.6. Water level vs. stored volume in Lake Urmia 

Fig. 6 shows H versus stored water volume in the LU between 2017 
and 2020. The six color-points on this plot relate to the volumes that 
were estimated from the bathymetric maps derived in Section 3.5. The 
dotted blue curve shows the predictive relationship between the H and 
volume as proposed by the former and only relevant study in the LU 
(Water Research Institute, 2015), which was derived for the lake’s very 
dry condition. We estimated the lake volume in surveys one to six as 
0.77 BCM, 1.27 BCM, 0.45 BCM, 0.79 BCM, 1.96 BCM, and 7.0 BCM, 
respectively, while the predictive relationship gives 1.14 BCM, 2.01 
BCM, 1.23 BCM, 1.56 BCM, 2.18 BCM, and 5.25 BCM, respectively. Both 
results witness that the lake volume during survey six (May 2020) was 
significantly larger than that in survey five (February 2019). This is 
because of the lake restoration with the aid of a large inflow from the 
feeding rivers in this period. The inset of Fig. 6 further shows the time 
series of H in LU between 2017 and 2020, which indicates that H 
increased by 1.09 from February 24, 2019, to May 17, 2020. 

The absolute difference between our results and the former predic
tive relationship in surveys one to six is 0.37 BCM (32.3%), 0.74 BCM 
(36.6%), 0.78 BCM (63.2%), 0.77 BCM (49.4%), 0.23 BCM (10.3%), and 
1.7 BCM (33.4%), respectively. With respect to the water volume 
magnitudes estimated from the bathymetric maps, the former predictive 
relationship overestimates the lake volume in survey periods one to five, 

Table 6 
Statistics of the estimated water depth in Lake Urmia. The statistics are presented for the whole lake, the northern half, and the southern and half, separately.  

Survey Stage Date of Satellite Imagery Lake Level (m) Average Water Depth (m) Coefficient of Variation of Water Depth 

Whole Lake North South Whole Lake North South 

1 Sep. 14, 2017  1270.32  0.62  0.76  0.42  0.80  0.77  0.47 
2 Apr. 26, 2018  1270.75  0.56  0.65  0.49  0.69  0.60  0.74 
3 Sep. 17, 2018  1270.27  0.43  0.38  0.47  0.72  0.94  0.46 
4 Dec. 22, 2018  1270.54  0.54  0.54  0.53  0.48  0.47  0.50 
5 Feb. 24, 2019  1270.82  0.86  0.55  1.11  0.47  0.59  0.24 
6 May 17, 2020  1271.91  2.00  2.28  1.80  0.32  0.28  0.31  
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while it largely underestimates the lake volume in survey period six. In 
particular, our results indicate that in May 2020, LU had 1.7 BCM of 
water more than what is believed based on the former predictive rela
tionship. This is an important observation as it can be used to assess the 
degree of lake restoration, regardless of the source of water provided by 
storm rainfalls or basin management practices. 

4. Discussion 

4.1. Revisiting the level-area-volume relationship in Lake Urmia 

Currently, ULRP uses the former predictive A-H and V-H relation
ships developed by Karimi and Bagheri (2016) to estimate the lake area 
and lake volume at a desired time, given the H measured at a ground 
station. We demonstrated that the difference between the formerly 
developed A-L relationship and that obtained in the present study, i.e., 
equations (9) and (10), is not significant. Nevertheless, we showed that 
there is a remarkable difference between the predicted volumes from the 
formerly developed relationship and our estimates based on the inten
sive hydrography data surveyed between 2017 and 2020. 

We argue that the reason for such a notable difference arises from 
some major issues in the study of Karimi and Bagheri (2016). First, they 
developed a multi-linear regression model to construct the relationship 
between the measured water depth and multi-spectral reflectance data. 
However, the employed multi-linear regression model cannot 
adequately capture the complexity in the relationship between water 
depth and reflectance. The superiority of intelligent learning models 
over the traditional approaches like linear regression has been already 
demonstrated by former studies (e.g., Liu et al., 2018; Mohamed et al., 
2016; Sagawa et al., 2019). Second, the measured hydrography data to 
calibrate the multi-linear regression model included 640 points that all 
were surveyed only in the north half of the LU. Regarding the large 
variability of the bed topography as well as water depth across the LU 
surface area, those measurements could not appropriately describe the 
whole lake condition and were merely representative of the bathymetric 

changes in the north half. Third, they used a single bathymetric map of 
the LU derived in 2015 to estimate the lake volume at other times. To 
map the topography of dried areas beyond the lake water body, they first 
classified Landsat images to determine the edge of the water body at 
different elevations. Then, they fitted a digital elevation model to the 
distance between these edges and the playa edge along the Golmank
haneh station as a reference point (Karimi and Bagheri, 2016; Water 
Research Institute, 2015). This process clearly imposes large uncertainty 
in the estimated volumes, as it does not take into account the impact of 
lakebed fluctuations due to salt precipitation and dissolution on the 
estimated lake volume at other times than September 2015. 

According to our results in Fig. 5 and Table 6, the bed elevation in the 
LU is highly dynamic in time; hence, an appropriate prediction of the 
lake volume at a given time must be conducted by using the bathymetric 
map of the same time. Therefore, the level-volume relationship devel
oped in 2015 to predict the lake volume in a range of H’s between 1267 
m and 1278 m ignores any changes in the lakebed elevation imposed by 
salt precipitation and dissolution. As such, we conclude that no single 
level-volume relationship can be proposed for the LU or any other saline 
lake to represent the lake condition over time. This is further demon
strated in Fig. 7 where for each of the bathymetric maps derived in 
Section 3.5, we extracted the relating level-volume relationship. The 
maximum H for each curve is the maximum bed elevation in the relating 
bathymetric map. The wide range of relationships in this plot clearly 
reflects the influence of the lakebed fluctuations due to salt precipitation 
and dissolution on the level-volume relationship. 

We note that Sima and Tajrishy (2013) also attempted to derive the 
level-volume relationship in the LU by (i) integrating the level-area 
relationship within the range of lake altimetry data, and (ii) calibrat
ing a couple of analytical models for the lake geometry, i.e., Nilsson’s 
power-function model (Nilsson et al., 2008) and simple truncated pyr
amid model. Assuming the integration approach gives the most accurate 
results as compared to the other two models, the applicability of the 
derived fourth-order polynomial relationship is still limited. This is 
because the estimation of the lake volume at a given H requires the 

Fig. 6. Water level versus stored water vol
ume in Lake Urmia. The dotted blue curve 
shows the proposed predictive relationship 
between the lake level and volume based on 
the bathymetric map derived in September 
2015 (taken from the study of Karimi and 
Bagheri (2016)). Color dots show the lake 
volume estimated from the bathymetric 
maps derived in the present study between 
2017 and 2020. (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the web version of this 
article.)   
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knowledge of the lake volume at a reference H, used as the minimum 
bound of the integration. The so-called reference volume can be only 
determined from in-situ hydrography data, and it also changes in time, i. 
e., different reference volumes can be observed at the same H. Therefore, 
the proposed level-volume relationship cannot express the lake geom
etry changes in time and may yield large errors within a certain range of 
H. 

The above pieces of evidence underline the necessity of timely hy
drography data collection in the LU to monitor the lake dynamics and to 
estimate the lake volume, appropriately. An accurate bathymetry also 
helps study other physical processes taking place in the LU. One of the 
poorly understood issues in the study area has been the lake saltwater 
exchange with the surrounding aquifer. Using limited hydrochemistry 
and isotopic field data, Amiri et al. (2016a, 2016b, 2016c) found that the 
sediment deposits on the lakebed act as a barrier, preventing the 
chemical interaction between the lake and groundwater and thus 
minimizing the saltwater intrusion from the lake (see also Mehr et al. 
(2019) for similar conclusions). However, a few other studies (Tourian 
et al., 2015; Vaheddoost et al., 2015; Vaheddoost and Aksoy, 2018) 
reported a significant correlation between the lake water fluctuation and 
groundwater level by analyzing sparse groundwater data recorded by 
observation wells in the region. Javadzadeh et al. (2020) further con
ducted a comprehensive analysis on the cross-correlation between the 
lake and groundwater level using data recorded from 797 observation 
wells in 17 adjacent aquifers between 2001 and 2018. They also found a 
significant correlation between these two quantities, where the direction 
of correlation changes spatially depending on whether the lake is losing 
or gaining. Regarding the statistical nature of the above studies, Shei
bani et al. (2020) have extended this exploration through a series of 
numerical simulations considering the impacts on saltwater intrusion by 
the lakebed sediment layer thickness, lakebed sediment hydraulic con
ductivity, and aquifer hydraulic conductivity. However, they set up the 
geometry of their numerical model based on the sparse hydrography 
data (ISRC, 2018), but not the bathymetric map of the whole lake due to 
its unavailability. It is seen that the lack of updated information about 
the dynamics of bathymetry in the LU has been a missing component for 
this and other relevant studies in the region (e.g., Abbaspour et al., 2012; 
Arabsahebi et al., 2020; Saemian et al., 2020; Safavi et al., 2020; Sharifi 
et al., 2018). Therefore, the results of the present study can be leveraged 
by future researches for analysis and synthesis purposes, as it provides 
the most comprehensive information on the LU bathymetric changes 
over a long period. 

4.2. The interplay between the quality of field data and remotely sensed 
imagery in controlling the accuracy of water depth prediction 

The results of the ANN model accuracy indicated that the prediction 
accuracy of water depth for the first data group was better than that for 
the second group, followed by accuracy for the third group. This 
observation was not expected regarding the impressive size of hydrog
raphy data in the third group and its spatially uniform distribution. We 
investigated the reason(s) for this finding by exploring the possible 
impact of atmospheric condition on the quality of data retrieved from 
satellite images. The average relative humidity and air temperature in 
the period corresponding to the first group of data were 34% and 29 ◦C, 
respectively. These measures were 48.5% and 18.8 ◦C for the second 
group of data, respectively, and were 83.1% and 5.1 ◦C for the third 
dataset, respectively. It is interesting to observe that the model error is 
positively and negatively proportional to relative humidity and air 
temperature, respectively. Indeed, under the higher relative humidity, 
the absorption and diffusion of electromagnetic waves by the water 
particles in the air reduce the useful information received by a satellite 
sensor from the ground. Despite using atmospherically corrected im
ages, we note that the advantage of high-quality training data obtained 
from the field measurements could not overcome the impact of 
remaining noise in the satellite data on the accuracy of water depth 
estimation. 

We also note that even though Manaffar et al. (2020) assessed the 
turbidity of LU and concluded the governance of relatively low turbidity 
in the majority of the LU surface area, we cannot extend this conclusion 
to the results of this study due to the lack of relevant data in our study 
period. Nevertheless, the order of estimation accuracy obtained in this 
study is much smaller than that expected in turbid water cases, which 
highlights the acceptable validity of our results. 

4.3. Dynamics of salt dissolution and precipitation in the Lake Urmia 

Changes in the lakebed elevation are expected to happen due to salt 
dissolution or precipitation, considering the hyper-salinity of the LU. 
Intuitively, it is expected that salt dissolution and precipitation take 
place by the lake wetting and drying, respectively. However, the state of 
lake replenishment versus depletion is not the only factor in determining 
whether salt dissolution or precipitation dominates in the lake. This is 
because, under a similar change of water volume, salt precipitation can 
take place in both cases of lake recession and progression. In the former 
case, the loss of water increases the salt concertation in the lake, which 
can precipitate if the saturation degree is reached. In the latter case, the 
salt concentration of the progressive water also increases as it dissolves 
the lakebed salts that were deposited during the former lake recessions. 
Therefore, the direction of change in the lake water volume cannot 
solely describe the relative degree of salt precipitation and dissolution. 
Instead, we suggest that the interplay between (i) the volume of fresh
water flow into the lake and (ii) the extent of lakebed inundation or 
drying area determines the degree of salt precipitation or dissolution in 
the lake. The relative influence of the above two quantities can be 
expressed as the ration ΔV/ΔA, where ΔV and ΔA is the change in the 
lake volume and surface area in a given period, respectively. Larger ΔV/ 
ΔA indicates that a variation in the water volume projects into a larger 
change of the lake level than the surface area. The state of salt precip
itation and dissolution is determined by the sign of ΔV (or ΔA), that is, 
positive and negative ΔV (or ΔA) indicates dissolution and precipitation, 
respectively. 

If the lake receives a significant freshwater inflow that increases the 
lake volume at a greater rate than the lake surface area, dissolution 
dominates due to a couple of major reasons. First, the impact of fresh
water in diluting the lake water dominates the rate of concentration by 
dissolving lakebed salts. Second, the inflow can circulate faster 
throughout the lake, which facilitates salt dissolution across a large 
extent of the lake. The reverse condition, i.e., salt precipitation, can 

Fig. 7. The impact of lakebed dynamics on level-volume relationship in Lake 
Urmia. Each curve shows a hypothetical level-volume relationship for the Lake 
Urmia if a given bathymetric map is used to compute the lake volume at 
different water levels. 
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occur under the same magnitude of ΔV/ΔA, but with opposite sign and 
at different absolute magnitudes of ΔV and ΔA. This situation holds 
during the lake recession when the loss rate of water volume is much 
larger than the lake area shrinkage. We note that in general, ΔV/ΔA 
cannot be accounted as a surrogate for the change in the average water 
depth. Depending on the geometry of the lake bathymetry and the state 
of H, ΔV/ΔA may take a large value, but the change in the average water 
depth remains mild. 

Given the above context, we hypothesize that a negative correlation 
holds between the salt precipitation rate and ΔV/ΔA, i.e., by shifting 
from smaller to larger ΔV/ΔA magnitudes between two consecutive 
periods, the lake condition is switched from precipitation to dissolution. 
According to Fig. 6, since LU has experienced multiple wetting and 
drying episodes during the study period, we could examine the above 
hypothesis by studying the amount of salt precipitation and dissolution 
given the changes in the lake surface area, stored water volume, and 
bathymetry. Nevertheless, we could not conduct this analysis due to the 
lack of elevation data on the terrestrial portion of the LU. Indeed, the 
extent of the derived bathymetric maps was confined to the boundary of 
the lake water body, which changes from one time to another. As such, if 
the objective is to compute the amount of salt precipitation and disso
lution from, e.g., stage one to stage two (see Fig. 5), we need to know the 
bed elevation in the region beyond the overlapping area between the 
bathymetric maps of the aforementioned stages. Therefore, the differ
ence between two consecutive bathymetric maps only provides infor
mation about the lakebed changes within the overlapped surface area of 
the maps and thus misses any information about the lakebed changes in 
the nearby areas. This limitation poses a quest to plan for a compre
hensive and timely data compilation on the lakebed elevation with the 
aid of both field data and RS. 

4.4. Limitations and caveats 

Despite the advantages of the employed modeling framework, this 
study carries some challenges and limitations. As Table 1 shows, some 
hydrography surveys were conducted over a long period, while limited 
satellite images (i.e., one or two) were available during the relating 
period. For further research, we suggest using data from other satellites 
such as Sentinel-2 to receive more images at a finer temporal resolution, 
especially during the high lake-inflow seasons when the lakebed is 
remarkably dynamic. Furthermore, we had to use a single H value for 
the whole period of each survey. This was particularly evident in the 
third and fourth survey periods when the change in H was considerable. 
Therefore, the water surface elevation at the time of satellite image 
acquisition could be different from that at the time of hydrography data 
collection. Unfortunately, we could not resolve this issue because the 
hydrography data provided from ULRP did not include daily informa
tion on the collected data over these periods. 

The other challenge of this work was rooted in using a single value of 
H for the whole lake in a given day. As described in Section 2.2, ground 
measurement of H is available only from one station in the lake, which 
does not describe diurnal fluctuation in H across the whole lake. The 
difference in H between the northern and southern halves becomes 
distinct during the lake dryer conditions when the segregation of the two 
halves occurs at low water surface elevations. Under these circum
stances, the water surface elevation in the two halves cannot be 
considered the same as that measured at the Golmankhaneh station. The 
use of single lake water elevation is further projected into the compu
tation of bathymetric maps as well as the lake level-volume and level- 
area relationships. 

Finally, we acknowledge that the surveyed hydrography data at 
some periods did not have a uniform spatial distribution across the lake. 
Given the fact that physical characteristics of water and substrate 
impose a remarkable influence on the relationship between water depth 
and surface reflectance, sufficient and uniformly distributed hydrogra
phy data is necessary for an appropriate estimation of water depth across 

the whole lake. We attempted to tackle this issue by clustering data from 
all survey periods into specific groups, which greatly improved the 
predictive model performance. The clustering operation further facili
tated model training over the whole spectrum of the lake water depth at 
a time of interest. However, the above consideration should be taken 
into account in future data collection in the LU to smoothen the process 
of water depth modeling and to provide hydrography data that include 
the smallest to largest possible water depths to measure. Also, since the 
spatial variability in the lake water chemistry influences the spectral 
properties of pixels with the same water depth, the hydrography data 
collection can be better guided by classifying the lake water based on a 
given water quality measure to ensure that data collection takes place at 
all classes with distinct quality characteristics. 

4.5. Final remarks 

Using RS data in water bodies is challenging mainly due to: (i) the 
high amount of electromagnetic absorption, which masks the informa
tion carried by water physicochemical characteristics, (ii) the impact of 
turbidity on water-leaving reflectance, (iii) the contrasting accuracy of 
many atmospheric correction methods developed for the calculation of 
surface reflectance. While the above challenges are related to all water 
bodies, RS of shallow water environments is further subjected to the 
radiometric interaction of water and substrate. Nevertheless, a few 
points are worth mentioning here. First, the Signal to Noise Ratio (SNR) 
is supposed to be higher in bright and shallow waters due to the lower 
electromagnetic absorption as compared to that in deep waters (Kutser 
et al., 2020). Second, given the substrate influence on water-leaving 
reflectance particularly near shorelines, this impact over a range of 
similar water depths would be uniformly distributed in water bodies 
with a uniform bed composition (such as the LU with salty bed). This 
would in turn diminish water depth estimation bias from machine 
learning algorithms that are capable of deciphering non-linear relations 
between water depth and surface reflectance if sufficient well- 
distributed in-situ data are employed. Third, the literature witnesses 
that RS of turbid waters has been less successful as compared to that in 
non-turbid waters because high turbidity could strongly mask the 
spectral information of water (Matsushita et al., 2008; Oyama et al., 
2007). In turbid waters (also known as Case-II waters) containing high 
amounts of Optically Active Substances (OAS), e.g., suspended solids, 
phytoplankton, and colored dissolved organic matters, high absorption 
of the electromagnetic spectrum by OAS reduces the decipherable in
formation from the water spectral signature. Also, due to the complex 
optical interactions between OAS components, we may not be able to 
derive a unique spectral pattern for a variable of interest (e.g., water 
depth) across a whole water body (Shen et al., 2010). As such, the sig
nificance of a careful selection of suitable atmospheric correction 
method is more critical in turbid waters as compared to that in non- 
turbid waters (Caballero and Stumpf, 2020; Wei et al., 2018). In such 
cases, the atmospheric correction schemes specifically developed for 
water environments, e.g., SeaDAS and ACOLITE, are recommended 
(Ilori et al., 2019; Vanhellemont, 2019; Vanhellemont and Ruddick, 
2014). Regarding the above challenges and opportunities, it is 
concluded that the proposed framework in this study can be employed 
effectively to extract the bathymetric map of a water body of interest. To 
this end, the availability of proper information on the physicochemical 
characteristics of the water body is necessary as a prerequisite for 
adopting appropriate input data processing tools. Also, the input satel
lite bands and the ANN structure (i.e., the number of hidden layers and 
neurons) should be optimized locally in the desired study area to make 
sure reliable estimation of water depth and boundary with small un
certainty is reached. 

5. Conclusions 

The catastrophic drying of the hyper-saline Lake Urmia (LU) has 
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been recognized as one of the most serious environmental issues of in
ternational interest over the past decade. Sustainable restoration of the 
lake relies heavily on an appropriate understanding of the lake dy
namics, which should be monitored continuously to decipher the causal 
relationship between the lake water volume and its controlling pro
cesses. In this study, we used extensive hydrography data and high- 
resolution satellite imagery to derive three-dimensional water depth 
and bathymetric maps in the LU at multiple instances between 2017 and 
2020. To this end, we developed a machine learning-based model to 
derive the complex, non-linear relationship between water depth and 
surface reflectance. The hydrography data included 32,984 points sur
veyed via six campaigns from September 2017 to May 2010 by the 
Urmia Lake Restoration Program (ULRP). By processing 172 Landsat 
images between 1984 and 2020, we further developed the level-area 
relationship that describes the driest and wettest conditions of the LU 
in the past 50 years. We found that by clustering in-situ hydrography 
data and optimizing the number of satellite bands required for the model 
training purposes, the model accuracy improved significantly. The 
testing process yielded errors that were much smaller than the lake- 
averaged water depth as evidence by RMSE = 7.8 ~ 17.9 cm. We also 
observed that two different linear relationships hold between H and A in 
the LU, with a threshold behavior at H = 1271.31 m. Our results indi
cated that no single relationship could describe the changes of lake 
water volume versus H over a long period. The derived bathymetric 
maps witnessed remarkable changes in the lakebed topography due to 
salt precipitation and dissolution during the episodes of lake drying and 
wetting. Given the highly dynamic relationship between H and volume, 
the findings of this study highlight the necessity of continuous and 
frequent bathymetric mapping in the LU. We finally observed that the 
LU water volume in May 2020 was 3.6 times larger than that in February 
2019, indicating a remarkable increase in the rate of lake restoration 
during this period. 

CRediT authorship contribution statement 

Mohammad Danesh-Yazdi: Supervision, Conceptualization, Vali
dation, Writing - original draft. Majid Bayati: Methodology, Software, 
Formal analysis, Writing - review & editing. Massoud Tajrishy: Vali
dation, Writing - review & editing. Behdad Chehrenegar: Writing - 
review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

Authors express their appreciation to ULRP for providing the ba
thymetry data of the Lake Urmia. Mohammad Danesh-Yazdi thanks 
Yasmin Ghadyani and Parsa Namaki for their assistance in field data 
collection on the Lake Urmia water boundary. Mohammad Danesh Yazdi 
also acknowledges supports from the Research Office of the Sharif 
University of Technology, Iran. 

Funding 

This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit sectors. 

References 

Abbaspour, M., Javid, A.H., Mirbagheri, S.A., Ahmadi Givi, F., Moghimi, P., 2012. 
Investigation of lake drying attributed to climate change. Int. J. Environ. Sci. 
Technol. 9 (2), 257–266. https://doi.org/10.1007/s13762-012-0031-0. 

AghaKouchak, A., Norouzi, H., Madani, K., Mirchi, A., Azarderakhsh, M., Nazemi, A., 
Nasrollahi, N., Farahmand, A., Mehran, A., Hasanzadeh, E., 2015. Aral Sea syndrome 
desiccates Lake Urmia: Call for action. J. Gt. Lakes Res. 41 (1), 307–311. https://doi. 
org/10.1016/j.jglr.2014.12.007. 

Alfakih, A.Y., 2018. Euclidean Distance Matrices and Their Applications in Rigidity 
Theory. Springer International Publishing, Cham. https://doi.org/10.1007/978-3- 
319-97846-8. 

Amiri, V., Nakhaei, M., Lak, R., Kholghi, M., 2016a. Geophysical, isotopic, and 
hydrogeochemical tools to identify potential impacts on coastal groundwater 
resources from Urmia hypersaline Lake, NW Iran. Environ. Sci. Pollut. Res. 23 (16), 
16738–16760. https://doi.org/10.1007/s11356-016-6859-y. 

Amiri, V., Nakhaei, M., Lak, R., Kholghi, M., 2016b. Assessment of seasonal groundwater 
quality and potential saltwater intrusion: a study case in Urmia coastal aquifer (NW 
Iran) using the groundwater quality index (GQI) and hydrochemical facies evolution 
diagram (HFE-D). Stoch. Environ. Res. Risk Assess. 30 (5), 1473–1484. https://doi. 
org/10.1007/s00477-015-1108-3. 

Amiri, V., Nakhaei, M., Lak, R., Kholghi, M., 2016c. Investigating the salinization and 
freshening processes of coastal groundwater resources in Urmia aquifer. NW Iran. 
Environ. Monit. Assess. 188, 233. https://doi.org/10.1007/s10661-016-5231-5. 

Arabsahebi, R., Voosoghi, B., Tourian, M.J., 2020. A denoising–classification–retracking 
method to improve spaceborne estimates of the water level–surface–volume relation 
over the Urmia Lake in Iran. Int. J. Remote Sens. 41 (2), 506–533. https://doi.org/ 
10.1080/01431161.2019.1643938. 

Bayati, M., Danesh-Yazdi, M., 2021. Mapping the spatiotemporal variability of salinity in 
the hypersaline Lake Urmia using Sentinel-2 and Landsat-8 imagery. J. Hydrol. 595, 
126032. https://doi.org/10.1016/j.jhydrol.2021.126032. 

Bedford, D., 2009. The Great Salt Lake America’s Aral Sea? Environ. Sci. Policy Sustain. 
Dev. 51 (5), 8–21. https://doi.org/10.3200/ENVT.51.5.8-21. 

Benson, L.V., Meyers, P.A., Spencer, R.J., 1991. Change in the size of Walker Lake during 
the past 5000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 81 (3-4), 189–214. 
https://doi.org/10.1016/0031-0182(91)90147-J. 

Bian, X., Shao, Y., Wang, S., Tian, W., Wang, X., Zhang, C., 2018. Shallow Water Depth 
Retrieval From Multitemporal Sentinel-1 SAR Data. IEEE J. Sel. Top. Appl. Earth 
Obs. Remote Sens. 11 (9), 2991–3000. https://doi.org/10.1109/ 
JSTARS.2018.2851845. 

Caballero, I., Stumpf, R., 2020. Towards Routine Mapping of Shallow Bathymetry in 
Environments with Variable Turbidity: Contribution of Sentinel-2A/B Satellites 
Mission. Remote Sens 12 (3), 451. https://doi.org/10.3390/rs12030451. 

Cahalane, C., Magee, A., Monteys, X., Casal, G., Hanafin, J., Harris, P., 2019. 
A comparison of Landsat 8, RapidEye and Pleiades products for improving empirical 
predictions of satellite-derived bathymetry. Remote Sens. Environ. 233, 111414. 
https://doi.org/10.1016/j.rse.2019.111414. 
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